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FOREWORD

This document presents the models, analysis
and results obtained for the National Weather Service

under Contract No. NA79SAC00668, "Applications of
Kalman Filtering and Maximum Likelihood Parameter
Identification to Hydrologic Forecasting".

A computer program, "SUBROUTINE REDO-UHG",
and a report entitled "Reduced Order Unit Hydrograph

Program Documentation" providing information on the
design and use of the program have been previously
delivered to the National Weather Service as part of
the same contract.

This study has benefited from several
conversations with E.A. Anderson, E.R. Johnson and
G. Smith of the Hydrologic Research Laboratory of
the National Weather Service and with Professor R.L.
Bras of MIT and his assistants. Their cooperation
is gratefully acknowledged.
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ABSTRACT

The applications of the canonical variate,
Kalman filtering and maximum likelihood parameter
identification techniques to the requirements of the
National Weather Service in river flow forecasting
are investigated.

State space reduced-order models for unit
hydrographs are obtained with the use of canonical
variate methods. A complete state-space model for a
catchment consisting of the Sacramento model as the
soil moisture system and the basin's unit hydrograph
as the channel routing system is constructed. This
model is used in the design of extended Kalman fil-
ters for the prediction of the channel discharge and
the state of the system, and also in the design of
an algorithm for the identification of catchment
model parameters through the use of maximum likeli-
hood techniques. The performance of the algorithms
is demonstrated with synthetic data generated with

*the models for the Bird Creek and White River basins.
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1. INTRODUCTION

1.1 BACKGROUND

The National Weather Service (NWS) has the responsi-

bility for hydrologic forecasting in the United States. This

responsibility includes the production of both flood warnings

and stream-flow forecasts. Accurate and timely flood warnings

are required for a wide variety of flood classes including

flash floods as well as floods of longer duration. Stream-flow

forecasts are required for diverse applications including the

planning of irrigation, the prediction of available hydroelec-

tric power, the maintenance of water quality standards, and

the planning of river navigation.

There is a continuing need for new techniques useful

for creating more accurate and cost-effective flood warning

and stream-flcw predictions. It is highly desirable to in-

crease the amount of automation used in the creation of hydro-

logic forecasts and to be able to take advantage of newly-

developing advances in computer and communications capabilities

and in computational and algorithmic techniques.

1.2 STUDY OBJECTIVES

The objective of this study was to investigate the

application of Kalman filtering, canonical variate and maximum

likelihood parameter identification techniques to the require-

ments of the National Weather Service in improving hydrologic

forecasting. The work was organized into three principal tasks:

1-1
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Task 1 ISSUES IN FILTER DESIGN

Under this task, the differential equations corre-
sponding to the Sacramento Soil Moisture model
were derived and several theoretical modifications
were developed. The equations of the soil moisture
model were combined with a reduced-order state-
space model for a unit hydrograph and an extended
Kalman filter that produces six-hour lead forecasts
of a basin's discharge was designed and implemented.
The details of the analysis and a set of results
obtained with the SSM model parameters of the
Bird Creek and White River drainage basins are
included in this report.

Task 2 STATE-SPACE MODEL DEVELOPMENT FOR UNIT HYDROGRAPHS

Under this task, a computer program has been
developed for applying the canonical variate
technique to the development of discrete-time
reduced-order state-space models for the approx-
imation of unit hydrographs. The computer pro-
gram (Subroutine REDO-UHG) accompanied with sup-
porting documentation (Ref. 1) has been delivered
to NOAA/NWS for use as an operation in the Version
5.0 NWSRFS Forecast Component. The principles
on which the design of the computer program was
based are described in this report together with
some examples of their application.

Task 3 PARAMETER IDENTIFICATION FOR CATCHMENT MODELING

Under this task, an initial investigation of the
applications of the technique of maximum likeli-
hood parameter identification to the problem of
catchment calibration has been performed. Pa-
rameter estimation algorithms appropriate to the
catchment model of the National Weather Service
have been developed and tested with simulated
data to determine parameter estimation error,
parameter identifiability and numerical behavior
of the algorithms.

Figure 1.2-1 presents the hierarchical structure of

the outputs of the three tasks described above. The state-

space models of unit-hydrographs obtained with the canonical

variate technique under Task 2 have direct application to the

1-2
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simplification of the processing of channel-inflow time series.

These models for unit hydrographs are used in Task 1 to create

complete state-space models for catchments which, in turn,

form the basis for the design and operation of Kalman filters

for the prediction of a basin's channel discharge and for the

estimation of the state of the system.

The maximum likelihood parameter identification proce-

dure of Task 3 is an iterative algorithm which uses a Kalman

filter as one of its main constituents. The filter innovations

(differences between actual and predicted measurements) are

used in the evaluation of the likelihood function. An optimi-

zation procedure utilizes the values of the likelihood function

and its functional gradient computed by symbolically differen-

tiating the operations of the filter to evaluate a vector param-

eter increment in the direction that maximizes the likelihood

function. The catchment model parameters are modified and the

process repeated until a convergence criterion is satisfied.

1.3 REPORT ORGANIZATION

The organization of this report is as follows: Sec-

tion 2 deals with the catchment model and the design of ex-

tended Kalman filters for the prediction of a basin's channel

discharge. Section 3 presents the canonical variate technique

and its application to the synthesis of reduced-order state-

space models for unit hydrographs. Section 4 describes the

algorithms for maximum likelihood identification of the param-

eters of the catchment model and presents some examples of

their application. Section 5 contains a review of the infor-

mation contained in this report. An appendix containing some

technical considerations on the constraint on the ratio of

free to tension water for the upper zone of the soil moisture

model is also included.

1-4
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For the sake of completeness, some of the material

contained in previous progress reports (Refs. 2 through 5) is

also included in this report.

1-5
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2. ISSUES IN FILTER DESIGN

This section presents the details of the analysis and

synthesis of an Extended Kalman Filter (EKF) for improving the

estimation of the state and channel discharge of a basin. The

basin's model considered in this study consists of the Sacramento

model as the soil moisture system and a unit hydrograph as the

channel routing system.

Pioneering work on the applications of Kalman filter-

ing to the National Weather Service's river flow forecasting

system is described in Ref. 6. The present work differs con-

ceptually from that of Ref. 6 in that the soil moisture proc-

ess is viewed as occurring in continuous-time rather than in

discrete-time as in Ref. 6. In addition, channel routing is

modeled by the basin's unit hydrograph while in Ref. 6 a linear

reservoir with variable outflow rate is used.

The Kalman filtering formulation requires that the

system be modeled in state-space form. The state-space dil-

ferential equations of the Sacramento Soil Moisture (SSM) model

were derived in Refs. 2, 3, and 4. To complement these' equL-

tions, channel routing was modeled by a suitable order state-

space model approximation to the basin's unit hydrograph ob-

tained with the methods described in Chapter 3 of this report.

The basic idea behind the EKF formalism is to approxi-

mate the system behavior, for a short time interval, by the

*A comparison of the state-equat ions of Ref. 6 and those used
in the present study is given in Ref. 2. Other differences
between the two studies are also noted in Ref. 2.

2-1
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linearized form of the state-equations about the operating

point at the beginning of the interval. The optimal filter

for the resulting linear system is used to propagate the state

estimates and their covariance matrix during the time interval

under consideration. A detailed treatment of extended Kalman

filtering is given in Ref. 7.

In order to test the performance of the filter and

the consistency of the formulation, synthetic data was gener-

ated using the model in the simulation mode. These data were

then used as input to the filter, and the state and discharge

estimates so obtained were compared to the truth values previ-

ously generated. The SSM model parameters and unit hydrographs

used in these tests were those of the National Weather Service

River Forecasting Sstem (NWSRFS) calibration of the Bird Creek

and White River drainage basins.

This chapter is organized as follows: Section 2.1

discusses the overall model structure and the interface be-

tween the soil moisture model and the system associated with

the unit hydrograph. Section 2.2 presents the state-equations

of the continuous-time part of the model including the SSM

model and a simple precipitation model. Section 2.3 discusses

the discrete-time equations associated with the unit hydrograph

system. Sections 2.4 and 2.5 describe in detail the operation

of the model in the simulation and filtering modes, respectively.

Section 2.6 presents a collection of representative results

obtained with the techniques described in previous subsections.

2.1 MODEL STRUCTURE

Traditionally, NWS has used deterministic models in

forecasting river flows based on meteorological data. Thus,

2-2
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necessarily, the intrinsic rate at which the soil moisture

model operates has been the same as the rate at which precipi-

tation data are collected. When a stochastic conceptual model

is used, however, the input rate to the soil moisture model

need not be the same as the rate at which accumulated channel

inflow estimates are produced. In fact, with a continuous-time

stochastic soil moisture model, the best estimate of the channel-

inflow rate given all previous measurements of precipitation

and channel discharge can be computed at any time.

Thus, even though the SSM model is a discrete-time

model, it was necessary to derive a continuous-time model

whose discretized version was in congruence with the SSM model.

In addition to the advantage of being able to compute state-

estimates at any time, there were two other reasons for model-

ing the soil moisture process in continuous-time. First, the

physical processes, in themselves, take place continuously in

time. For example, the effects of a severe storm of short

duration cannot be properly modeled using a predetermined

equally spaced sequence of times. Evidence for the need of

considering the dynamic behavior of the system in continuous-

time is found in the LAND subroutine. There, depending on the

availability of free water in the upper zone, the basic time

interval is partitioned into a number of subintervals for the

computation of the percolation function. This computat ion

determines the distribution of water to the lower zone, the

amount of surface runoff, etc. Secondly, the threshold values

associated with many of the variables can be attained at times

which, in general, do not coincide with the endpoints of arbi-

trarily chosen time intervals. These thresholds determine

when the system switches from one mode of operation to another

and are of fundamental importance in the analysis.

2-3
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Channel routing, on the other hand, is modeled as a

discrete-time system. A k-hour unit hydrograph yields instan-

taneous discharge rates when given an input sequence consisting

of k-hourly accumulated channel inflow values. For most of

the unit hydrographs used by NWS the input sample rate is equal

to the output sample rate; i.e., estimates of the discharge

rate are produced at intevals of k hours. All hydrographs

considered in this chapter belong to this category.

In the present analysis measurements of accumulated

precipitation are assumed to occur at an 2k-hourly rate and

observations of mean discharge occur every mkk hours. For

example, the situation in which kz6, i=i, m=1 represents the

case where continuous estimation of the state of the system is

performed given 6-hour measurements of accumulated precipita-

tion and instantaneous discharge; k=6, R=i, m=4 corresponds to

6-hour measurements of precipitation and daily observations of

mean discharge. Figure 2.1-1 summarizes the above convention.

In order to combine the state-space model of the soil

moisture accounting procedure, which yields continuous-time

estimates of the channel inflow rate, with the unit hydrograph

system, which requires k-hourly accumulated channel inflow at

its input, it is necessary to introduce an additional state.

The role of this state is to integrate the channel intlow rate

for periods of k hours. A schematic diagram depicting the

interrelation between the different components of the model is

given in Fig. 2.1-2. The additional state mentioned above can

be visualized as a reservoir, labeled Channel Inflow Accumu-

lator in Fig. 2.1-2, whose contents are dumped into the unit

hydrograph system every k hours.

*In some instances, NWS uses unit hydrographs for which th.
output rate is higher than the input rate (see Section .
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Figure 2.1-2 Basin Model Components
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Two more accumulator states are needed to account for

the memory-type measurements. The rainfall accumulator in the

upper right corner of Fig. 2.1-2 integrates the rainfall rate

for periods of Qk hours and the discharge accumulator in the

lower left corner of Fig. 2.1-2 adds up the mk discharge rates

whose average yields the mkk-hour mean discharge.

The basin's state-space model contains 10+M states

where M is the order of the state-space model approximation to

the unit hydrograph system. A description of the states is

given in Table 2.1-1. It was shown in Ref. 2 that six states

suffice to represent the SSM model. The first six states in

Table 2.1-1 correspond to the SSM model. Their equivalents in

the LAND subroutine are indicated in parentheses in the table.

States 7, 9, and 10+M are associated with the accumulators

previously described. State 8 provides the basis for the rain-

fall model which is presented in detail in Section 2.2.2. The

remaining states (10 through 9+M) correspond to the unit hydro-

graph system.

It is convenient to partition the state-vector, x, as

x (2.1-1)

d)

where xc and xd stand for the first 9 and last M+I components

of x, respectively. The subvector x c evolves continuously in

time while xd changes only at times which are multiples of the

hydrograph rate, k. These times (vk; v=0,1_.... ) are referred

to as critical times in the sequel.

The operation of the filter can be describc'd in Ltcne. raI

terms as follows. Between cri t ical times t here ir e trt, 1,1 aur.-

2-(,
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TABLE 2.1-1

BASIN MODEL STATE DESCRIPTION

STATE DESCRIPTION

1 Upper-zone tension-water content (UZTWC)

2 Upper-zone free-water content (UZFWC)

3 Lower-zone tension-water content (LZTWC)

4 Lower-zone primary free-water content (LZFPC)

5 Lower-zone supplementary free-water content
(LZFSC)

6 Excess of the additional impervious storage
over the upper-zone tension-water content

(ADIMC-UZTWC)

7 Channel-inflow accumulator content

8 Rainfall generator model

9 Rainfall accumulator content

Unit hydrograph model

9+M

10+M Channel discharge accumulator

ments. The continuous part of the state estimate, X , is-c

propagated in accordance with the associated differential equa-

tions, but the discrete part, kd' remains unchanged. When a

critical time is reached, the channel routing portion of the

model is updated taking into account the accumulated channel-

inflow during the past k hours. At this point, if there are

any measurements, the Kalman gains are computed and used to

modify all the state values by incorporating optimally all of

* is the estimate of x.
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the information contained in the measurements. Finally, the

contents of the appropriate accumulators are reset to zero and

propagation of the continuous part of the state for the next k

hours begins.

It is convenient to introduce a notation of super-

scripts to be affixed to the critical times in order to dis-

tinguish the various state values computed at these times. If

t is a critical time, x(t) stands for the state vector immedi-

ately after propagation of the continuous part for the last k

hours has been completed, x(t') represents the state after the

discrete transition for the unit hydrograph part of the model

has taken place, x(t ) denotes the value of the state following

a Kalman update and x(tr) is the state after resetting any

accumulator to zero. Table 2.1-2 summarizes the behavior of

the state values for a full cycle of operation of the model

(mkk hours) using symbolically the notation introduced above.

For example, the notation - = 0 X + X r means x(t-) = x(t ° )
x(t )+ x(tr

Thus, the transition from t- to to only affects the

discrete states of the model (last two columns in Table 2.1-2).

The transition from to to t+ corresponds to a Katman update.

Since all state estimates can be expected to improve following

a Kalman update, Table 2.1-2 indicate 0 X + "fr all states at

the times at which there is at least one measurement. The

transition from t+ to tr only affects the accumulator states.

State seven, the channel-inflow accumulator, is reset to zero

at all critical times. State nine, the rainfall accumulator,

and state 10+M, the discharge accumulator, are set to zero

following a rainfall or discharge measurement, respectively.

The arrows in the last two columns of Table 2.1-2 indicate

that the d.screte part of the model does not vary between

critical times, i.e., if ti  and ti+1  are two successive criti-

cal times, then

2-8
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Xd(t rd i )  d d(t i+ 1 )  (2.1-2)

2.2 MODEL EQUATIONS - CONTINUOUS TIME COMPONENTS

The state-equations for the complete basin model are

of the form (v=0,1,.

x (t) = F (x t) + G c (t) (2.2-1)
-c -c (c Cc

x d(vk)°] = A x d(Vk)-] + B x c (k)-I (2.2-2)

where F (X ,t) is a nonlinear time-varying vector function of
c -c

the continuous part of the state, the time dependency being

through the potential evapotranspiration demand, u2 (t). Gc is

a 9xl matrix and C is a scalar gaussian white noise input that

drives the rainfall model (see Section 2.2.2). Thus, the only

nonzero entry in G appears in row eight. The factors A and B
c

are (M+l)x(M+l) and (M+1)x9 constant matrices, respectively.

In addition to Eqs. 2.2-1 and 2.2-2, the accumula-

tors' contents are reset to zero at the appropriate times

x 71(n)r, = 0 ; n O,k,2k,... (2.2-3)

x 9 1(n)rl = 0 ; n0,Qk,2k,.... (2.2-4)

x 10+M (n) r, 0 ; n0,m~k,2mzk, ... (2.2-5)

Changes in the discrete part of the state vector, Xd,

occur only at the critical times. If vk < t < (v+l)k the state-

equations for xd can be thought of to be

d(t) = 0 (2.2-0)

2-10
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Let y] and Y2 be the measured values of precipitation

and mean discharge, respectively. The measurement equations are

Y(vik)= x 9 l(vk)°] + tl(v2) (2.2-7)

Y2 (vmk) x 0+M [ (vmkk) °0 + t 2 (vm2) (2.2-8)

where t, and t2 represent the errors in the measurements mod-

eleo as white noise sequences.

This section presents the individual differential

equations associated with Eq. 2.2-1. It is organized as fol-

lows: Subsection 2.2.1 treats the SSM model equations, Sub-

section 2.2.2 introduces the rainfall model equations, and

Subsection 2.2.3 gives the equations for the channel-inflow

and rainfall accumulator states. Section 2.3 presents the

discrete equations corresponding to Eq. 2.2-2.

2.2.1 SSM Model Equations

The state equations corresponding to the Sacramento

Soil Moisture model were derived from the NWSRFS LAND subrou-

tine documentation (Ref. 8). Six states (labeled one through

six in Table 2.1-1) are necessary to represent the model: t')

states for the upper zone, three for the lower zone and ont.-

for the additional impervious area content. The parameters (d

the model are listed in Table 2.2-1. The relationship given

in Table 2.2-1 between the instantaneous drainage coefficients,

d o , d' and d" and their counterparts in the LAN) subroutine,

UZK, LZPK and LZSK was derived in Ref. 2.

The SSM model contains several threshold-t vpe non-

linearities associated with the bounds on the contents of the.
elements of the upper and lower zones and with constraints on

2-11
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TABLE 2.2-1

SSM MODEL PARAMETERS

IAN INOIOtN (:(?1IVAIlNI'N lt.StR I PiTIN

1 tII1WM litiper-zitne t etsioit-wateri capait V (miii)

11;7FWM tipper-zone I ree-wat er L'Apat'it (miii)

S I.ZTW.M Lotw('-n it irsitriwa c, il'i (min

1.7 -I'Mlowr - ztnepr iniar f'ree-wat yr cattV (tmim

IZF SM liwetI Z0li0 S(It)ItI(I'l.'tr I rv-watc ii apact-i v (Um

'I -Pn( 1-IiK/l.4 Ilfipi'r-7ot- ifl~taitarti'(ut; Iiaii~ge iiteflti ent (IAi

i' -Pn( I -1./IN),,2/s Liwer-zoinu ptimiarv jis~taiitarli'.us diaiiiagr' i-t fi.'I itent (I/hi I

11(I -lZ N'' jowi -ziwr s r'tiitary inqt ant ancetus dra; nag.' ictt fit lent (I 'hr

ZITR( Pa I am.'t ey r iti pi'rcoI at I on fi(.t i on

pIPFRI"P Fiai n lif prert-tlariI water assigned lot thr lr)Wer 7tnr-
free wi4tel aquifers

PSlIl DE raction .f lia,-I low noit appeii.ing ill rli-t flow

a ~~AIIMI' F i act ion tit Ilta-,t thnIait ltret times iiipt\ tit wn-t l'ti'r -t

'2 l('lIN 'r t n Ita stt~i it i ni.ii 'r dem ti iftijallti-~ii

ratios of free to tension-water content for the two zones. A

derivation of the imipliCations of' these const-'iints in a

continuous-tinte SSM model was included in Ref. 2. For the

upper-zone, the constraint can be written as

( x x/ (2. 2-94)

and for the lower-zone,

x 4+ X5

> (I -(1 - - (2.2-10)
x 0+x ox 
*4 5 3

Furthermore, at any timle, t when (qualit 'y holds in Eq. 2.2-9)

or in Eq. 2.2-10, the right derivatives of the states mlust satistil

2-12
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Ct)X < (t )/X1 (2.2-11)

or

W___ W4 t) + W
r)_3_ >_ x5() (2.2-12)

x0 x0 + 0

3 4 ~5

respectively.

In addition to the threshold-type nonlinearities there

are other nonlinearities in the SSM model. The most important

nonlinearity is associated with the percolation function. At

any given time, the percolation rate from the upper to the

lower zone is given by

P P 2 K - x + (2.2-13)
x 0 X0+ X0+

with

p 0 =d' x0 + d" x0(2.2-14)k 4 2 5

Let z 3, z4 and z5 be the percolation rate inflow into

the lower zone's tension-water, primary free-water and supple-

mentary free-water elements respectively. In the SSM model,

under normal operation (i.e., no threshold active), the- total

percolation is divided into the lower zone's elemients as

Z (1 - PO)P (2.2-15)

x02(1 - 04/~
44 - - Xrx PfP (2.2-16)

0 0
X4 X5
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x1 2(1 - x4/x2)
z5  4o- x424 _5 pfp (2.2-17)

x4 + 5 2
0 ox4  x5

Thus, a fraction, (1 - pf), of the total percolation is as-

signed to the tension-water element and the remainder of the

percolation is divided between the free-water aquifers accord-

ing to Eqs. 2.2-16 and 2.2-17.

In Refs. 2 and 3 the exact differential equations

of the SSM model were derived. The equations given there cor-

respond to the distribution of the percolation rate indicated

by Eqs. 2.2-15, 2.2-16 and 2.2-17. There is a difficulty asso-

ciated with the use of this distribution of the percolation
0 0rate: if x0 > x , the fraction of pfp assigned to the primary

free-water aquifer, Eq. 2.2-16, is larger than 1 and the frac-

tion assigned to the secondary free-water aquifer, Eq. 2.2-17,

is negative for a certain range of values of x4 and x5. Ac-

cordingly the distribution of the percolation rate to the lower

zone was slightly modified. The modification (Ref. 4) is

described below.

The percolation function, Eq. 2.2-13 can also be

written as

0x2 d 0 o x2
p = d' x - + d" x - + (2.2-18)

x2  x2

with

0 x 3 + 4+x5=- (2.2-11))
x0 x0 + x0+x0

2 X 3  4 5
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With the aid of Eq. 2.2-18 the total percolation rate can be

interpreted as consisting of two parts. One part, correspond-

ing to the first two terms in Eq. 2.2-18, depends on the maxi-

mum baseflow rate from the free water aquifers and on the

availability of water in the upper-zone free-water element.

The other part, corresponding to the terni P in Eq. 2.2-18,

depends on the lower zone's deficiency ratio as well as on the

upper-zone free-water normalized content.

The modified distribution of the total percolation is

z3 = (I - Pf) (2.2-20)

0

d' x 0 - + x p (2.2-21)
4  k 4 o o -x o

2  4  4  5 5

0

z= d xo - + pf (2.2-22)
5  o o PfP

2  4 4 5 5

instead of Eqs. 2.2-15, 2.2-16 and 2.2-17. Thus, each of the

free water aquifers receives a part of the percolation which

is proportional to its maximum outflow rate and to the availa-

bility of water in the upper-zone free-water element, and a

second part which depends on the element's deficiency as a

fraction of the total deficiency in the free water elements

and, also, on the lower zone's deficiency ratio.

With the aid of the functions

I1 if n >_ 0

hf(n) (2.2-23)

and

h (q) = I - hf(f ) (2.2-24)
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The state equations of the SSM model with the modified distribu-

tion of the percolation rate to the lower zone can be written

as:

\ x !

)h -x) + ]fx o f
x h + h --) h h- (g h(x 2 h e  f((g2

\x x x

2 u1 - 2  du 21) e ~ '

x x

(2.2-25)

S= I(U - u2 ) hf(xj - xl) h(u 2 - u) dX 2  p
00

{h(X 2 - x2 ) + hf(x 2 - x2 )

" hfIduxo + p- <u - u2 ) hf(xl-xo) heu 2 -u 1 H

[h( 1) '+ hf(2(X x - (

x 2  
x 

X2 Xl

x 2X1
+ u -u 2  d x h ef('

1 2  2I

(2.2-26)

ox3

3 -u 2 (l Xl/Xl) o -o+ P)Pj

1  + 3

× 1he(X - x0) + hf(x 3  x')) hf(m)lh (w) * )h g

F, i+ "u2(I " xl/Xl) o o +  Z
x + x 3
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l× (x 3  x ) + hf(x 3  - x 3 ) hf(m)] hf(w) hf(g")

(2.2-27)

0
d + d xR2 x 4 -x 4

4= ~24 4 ~x o 0 + o - P

2  4  4 5 - 5

* lh(x 3  - x ) + hf(x3  - x0) hf(m)]lh (w) + hf(w) he(g")]

, x2 ~ o- x4 x4 (ie 3  3 f d --- 3  3 f ) ) f)
0 F

* -d' + dj' 2 + X 4  X4  Z)_
4 2 4 - 4  

-5 5

o3 e

* Ihe (x 3 - x3 ) + hf(x 3  - x3) hf(m)] h f (w) hf(g") )

*id d x '2 + x 4 -x 4  u0 x/o)

+ d4 + dx 0 x2 x + X5 - X5  2 0X

* h)f (x 3x) hne(m )  (2.2-28)

0

_ _ _ _ _ + dK

2 4 4 5 5

5 -,,5 + ,, o 0 0 pfx/x

x Ihe(x 3  x3 )  + h (x3  x ) 0 f(m)][he (W) + hf(W) Ihe(g" ]

* [-d?, + d"xo X '+ 5x5Z

-x x +X -x
+ "~x +d~5 2  4 - 4 5 - 5

he(X 3  3) f h x3  x3) f hf f

x, o 2 x 5 x 5 o*--x + ~o + - 1 x2( " /Xl )
kd 5 Q dx5 x 2o x 0-x4 + x5 x5 2 x] x(,

x hf(x 3 ) he(m)
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=(u 1 - u) hf(x1 - x 0)- u2(1- x1 /x1 ) X6

1 3

-(u, - U)()2 h (x1  x 07

-(u u2 - d x 0 - P)[ (\)21 x - xo) hfx - )

(2. 2-30)

In the above equations u1I and u2 stand for the instantaneous

precipitation and potential evapotranspiration demand rates.

respectively. In addition

I= - u l)[hex - xi') + hf(xl - xo) hf~u -U 1

S (u - u2 ) 0h(xl 1 17 h(u 2 1  d 2 -p

(x 1 0)1

"e 2 (x x 0) + hf(x x '2

" hf~duxo + p - ( 1 -u)hf(xl xO)h~u

(2.2-31)

w (1-r)(l - x /xo) T - x 5(2.2-32)

3 3(x0 + j xx0

Z()1x r ) ( x + x0) / x 3

3 4

0 (P- d ? 4 d (2. 2 -3
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g" = z - (1 Pf)P (2.2-34)

and

x3
m = u 2 (l X /x1 ) o 3 (1 - Pf) (2.2-35)2 1 1 0 + X0

The propagation of state values in the simulation

model and the EKF technique are both based in successive lin-

ear approximations to the state-equations. For a short time

interval the nonlinear vector function F in Eq. 2.2-1 is re--c

placed by its tangent hyperplane at the point corresponding to

the state value at the beginning of the time interval. The

choice of the length of the time interval is discussed in Sec-

tion 2.4. The inference is that the present approach to simu-

lation and filtering imposes restrictions on the form of the

state-equations: the nonlinear function F must possess con--c

tinuous partial derivatives with respect to all states.

The function F that results from using the differen--c

tial equations 2.2-25 through 2.2-30 directly in Eq. 2.2-1

does not have continuous derivatives. In fact, it is not even

continuous. The discontinuities arise from the threshold \'al-

ues associated with the elements of the upper and lower zones

as well as from the constraints on rat ios of free to tension-

water present in the SSM model.

Use of the EKF technique on the reduced SSM model

requires modification of the state-equations 2.2-25 through

2.2-30 to eliminate the threshold discontinuities. This is a

step of cardinal importance in the analysis. Some of the most

essential features of the SSM model such as the sul)ply of wajt ,r

to the upper-zone fre,-water element, the (ist ribut ion of ',, rtu-

to the l owe r zone and the appearanc t, of surface runot fr,

crit ically affected by the approxNju.11 ion. Arbi t riry smothing
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of the discontinuities in the state-equations may yield to

physical inconsistency (the principle of mass conservation may

be violated) and mathematical inconsistency (a solution may

fail to exist).

An analogy with electric circuits was used in Ref. 5

to obtain a set of smoothed equations corresponding to the SSM

model with the constraints on ratios of free to tension water

removed from the model. It is shown in the Appendix that for

all basins examined the constraint for the upper zone is super-

fluous. Even though situations in which the lower-zone con-

straint is activated cannot be ruled out a priori, they have

not been observed in the results obtained to date. When the

lower-zone constraint is introduced, the smoothed equations of

the SSM model become

Xl = U - U 0x/Xl - g(xllx )

moisture evapotranspiration excess upper-zone
input from the upper zone tension-water supply

(2.2-36)

0x2 o 2g(xlX9 ) du  x d No 5u2  2 7

excess from interflow percolation to lower zone
tension-water

g(,x ) (2-.2-37)

surface
runoff
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1"12 0 0

3 = (1-pf)p 0 2  (1-X1/X1)X 3  g(x3'x3)

x 1+x3

percolation evapotranspiration excess lower-zone
supply from the lower zone tension-water supply

+ f(z,(l - pf)P) h(w) (2.2-38)

effect of lower-zone
constraint

0
x -x4  0 2

x4= 0 [PfP + g(x3 x)1 + d 4 x
x4-x 4  x5-x 5  2

moisture supply (percolation + excess tension-water)

0

d x 4  0 X 4 X 0 f(z,(l - pf)P) h(w)
X4x 4 x5-x 5

baseflow from effect of lower-zone constraint
primary

(2.2-39)

0x5-5 + di' x 2
5= 0 0 [PfP + g(x 3 xN3)1 + P5 02

x4 -4 x5 -5 x 2

moisture supply (percolation + excess tension-water)

0

( x5  +5 5  f(z,(l - 1)f)P) h(w)
x4-x 4 X5-x 5

baseflow from vffect of lower-zone constraint
supplement ary

(2.2-40)

where w and z are given by Eqs. 2.2-32 and 2.2-33 respect ixelyv

and where the functions f. g and h are given by
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0 if q <_ -6
f (+6 -)

f 0 i f i-6 < < <+6 (2.2-41)
46

if rq > -+6

( 0 if (0 q

g(n 'ro) 0 2-f (2.2-42)Se o2 o (.-2

-- ( ) if q >_

0 if n < -6
(n + 6/2, 2

6 if -6 < q < -6/2

h(n) = (2.2-43)
( q  6/2)2

6 if - 6 /2 < q <

ifq > 0

where 6 and e are constants, typical values of which are 6

- 0.01, e = 100. Graphs of the functions f, g and h are given

in Figs. 2.2-1, 2.2-2 and 2.2-3, respectively.

R-51647

f ,

Figure 2.2-1 Graph of the Function f(nA)
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R*51646

g (77 71

77 2

Figure 2.2-2 Graph of the Function g(q,r 0)

R-59516

h 00

11

Figure 2.2-3 Graph of the Function h(n)

As a consequence of the approximation the upper

bounds on the state valuEs may, on occasion, be slightlyv ex-

ceeded. Examples of this behavior are given in Section 2.6.
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By increasing the value of the constant e in Eq. 2.2-42, the
possible excess of state values over their bounds may be re-

duced. Even though in the results obtained to date the lower-

zone deficiency ratio, p, defined by

x + x + x
p 1 - 5 (2.2-44)o 0 0 ox 3 + x 4 + x 5

3 *4 .5

has always been greater than zero, there is the possibility

that it may become negative during extreme flood periods.

This ratio appears in the percolation function and if its

value is negative, given by Eq. 2.2-19 is undefined. The

definition of is completed by setting

0 x 2u
p y - - p p >_ 0

x2
2 (2.2-45)

pOy -0 (_p) p < 0

with p as in Eq. 2.2-44. Thus, when the lower zone deficiency

ratio is negative, water is drawn out of the lower zone into

the upper-zone free-water element. If the latter is full, the

amount of water drawn out of the lower zone contributes to the

surface runoff.

The equation for x6, the excess of the additional im-

pervious storage over the upper-zone tension-water content, is

o o 0 2

x6 = Ig(x 1 ,x 1 ) - g(x 2 .x2 2 ] (x6/x 3 ) 1

" u2(1 - X/X o) (2.2-40)
x I + x0
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The equations for the moisture input ul in Eq. 2.2-36

are discussed in the following section.

2.2.2 Rainfall Model

The Kalman filtering formulation assumes that random

inputs driving a system are solutions of stochastic differen-

tial equations. The simplest such input is the so-called first-

order Markov process (Ref. 7) which is generated by the equation

x8 (t) = - x8 (t) + (t) (2.2-47)

where 0 is a real number and t is a Gaussian white noise proc-

ess with constant spectral density q. If X is interpreted as

a rainfall rate with units of mm/hr, the units of t are nmu/hr 2 ,

those of q are (mm/hr2 )2/(l/hr), and the units of are I/hr.

If P>O a stationary solution, x8 (t), to Eq. 2.2-47 exists, and

its covariance function is

Elx 8 (t+r) xs(t)] = q_ e- PlTI (2.2-48)

The quantity 1/p is called the correlation time of the process.

The process x8 (t) has a mean value of zero. Its sam-

ple functions oscillate about the time axis, and even thugh

values much larger than the standard deviation, (q/2p)

have a low probability of occurrence, there is no actual upper

or lower bound on the values the process may take. A precipi-

tation model should reflect the existence of periods in which

there is no rain and the fact that rainfall rates are never

negative. Thus, Eq. 2.2-47, per se, does not constitute an

appropriate precipitation model in a simulation. However, a

* E denotes the mathematical expectation operator.
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simple nonlinear transformation of the process x 8 (t) yields a

useful precipitation model for simulation purposes. Consider

the precipitation rate defined as

u1 (t) = f(x8 (t),R 8 ) (2.2-49)

where the function f is given by

0 if q <
f (rl i) :" if r > n (2.2-50)

r1q-,i if q > f

Whenever the values of the process x8 are less than the thresh-

old value K 8 , the precipitation rate is zero. If x8 is larger

than K their difference is taken as the precipitation rate.

An example of a typical realization of six-hour accumulated

rainfall obtained with this model is given in Fig. 2.2-4.

Other examples are given in Section 2.6.

Six-Hour Accumulated Precipitation

10,

8-

2-J

2

0 -0 0 6 .5
TIME (days)

Figure 2.2-4 Example of Acc'unulated Precipitation IPr<ductd
with the Rainfall Simulat ion Model
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The fraction of time during which rain occurs is equal

to the probability that x8 (t) is greater than R8 and is given by

0P1l(t) > 0] = 1 - 0 ( ) (2.2-51)

where

-(a) 1[ e5s/2 ds (2.2-52)

is the standardized normal distribution function, and

a = (q/28) 1/2  (2.2-53)

is the standard deviation of x8 (t). The expectation and vari-

ance of the precipitation rate given that it is actually rain-

ing can be computed to be

E lu1(t)Iu1(t) > 01 = o -R8 (2.2-54)

2 a2 A 2 + (2.2-55)
u(t)lU(t) > 0

where

2 2
-x 8 /2o2

A e /(2n 2.2-50)
1 - 4(R8/o)

Equations 2.2-51, 2.2-54, and 2.2-55 may be used in

fitting the model parameters, P, q, and R8 , to data records.

The seasonal variation of rainfall can be modeled by letting

the model parameters vary with time. For the results included

in Section 2.6 corresponding to the Bird Creek basin and for

the precipi tat ion record of Fig. 2.2- 4 the correl at ion t i me,
"' 2/

I/p. was taken to be one day. q = 0.285 (nm/hr2) /(I/hr) and

R 2 him/hr. And for the results corresponding to the White
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River basin in Section 2.6, the parameters are / = 12 hr, q
2 2= 0.015 (mm/hr ) /(l/hr) and K8 = 0.153 mm/hr. These parame-

ters were chosen on the basis of NWS values of mean areal pre-

cipitation (MAP) for the Bird Creek and White River basins

corresponding to the periods between April 19, 1959 and May

19, 1959 and between May 1, 1968 and June 1, 1968, respectively.

These periods were chosen because the relatively high quanti-

ties of precipitation that were recorded served to illustrate

the nonlinear behavior of the model in the results presented

in Section 2.6.

The function f in Eq. 2.2-49 does not have a deriva-

tive when x 8 = R8" Since the operation of the simulation model

requires the existence of derivatives for the linearization of

the equations, the function f was replaced by f as defined by

Eq. 2.2-41.

The above model is useful only for simulation pur-

poses. It is referred as rainfall simulation model in the

sequel. For reasons that were discussed in Ref. 5, this model

is inappropriate for the filtering formulation.

Instead of the above simulation model, the model used

in the filtering formulation is a linear rainfall rate model

that has the same first and second-order moments as the rainfill

simulation model. The rainfall rate is

ui(t) = u1  + xA(t) (2.2-57)

where u1 is the average rainfall rate given by

u Pl lu t I W 01 Elu (t )lUl(t) > 0 (2.2-58)
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or, in terms of the quantities previously introduced, by

u I = [1 - (R 8/o)] [A - R 81 (2.2-59)

The process x1(t) is a first-order Markov process satisfying

the stochastic differential equation

x (t) = - j3 xI(t) + (,'(t) (2.2-60)

where t'(t) is a Gaussian white noise process with spectral

density

q'= I - 8 11 + (x 8 /o) 2  A./ol

[I - €(. 8 /o)j 2  [A - R 8 /o 2 q (2.2-61)

The values of u and q' associated with the rainfall

simulation models previously introduced are u 0132 i1ii/hr

q' = 0.0165 (mm/hr2 ) 2/(l/hr) for the Bird Creek basin and u

0.0583 mm/hr, q' = 0.00254 (mm/hr2 ) 2/(1/hr) for the White River

basin. The rainfall model corresponding to Eqs. 2.2-57 and

2.2-60 is called rainfall filtering model in the sequel.

2.2.3 Equations for the Channel-Inflow and
Rainfall Accumulator States

The contributors to the channel inflow accumulator

are: rainfall over permanently impervious areas, direct run-

off from the additional impervious area, surface runoff from

the upper zone and from the additional impervious area, inter-

flow and baseflow. To all these contributions the evapotrans-

piration from stream surfaces and riparian \'egetation is sub-

tracted. The equation for x7  is easily found tou b(-

7 = f(y,0) (2.2-62)
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where f is given by Eq. 2.2-41 and

21 + al[g(xl,x ) - g(x2, x) 6 +(1-a

+ (-a-a 2 ) [dX 2  + d x + d 5

- S u(I - x /x 0) (1 x3 (2.2-63)

1 '3

The equatior for the rainfall accumulator is, sim1ply,

x 9  u 1  (2.2-64)

2,.3 MODEL EQUATIONS - DISCRETE TIME COMPONENTS

In contrast with the equations for the continuous part

of the model, those of the discrete part are linear. Let the

state-space model of the unit hydrograph be (see Section 3.4.4)

xh(J) = 4h xh(j-1) + Gh uh (j) (2.3-1)

.h(j) = Hh X-h(j) (2.3-2)

where xh is the state vector, uh the input, vh the discharge

rate, 0h the MxM one-step transition matrix, Gh the M-1 input

matrix and Hh the lxM output matrix of the unit hydrograph and

where time (j=0,1, ... ) is measured in multiples of tie unit

hydrograph rate.

It is convenient to express the disciarge at time j

in terms of the state vector at time j-1. Replacing xh(J) il

Eq. 2.3-2 by the expression on the right of Eq. 2.1-1 yields
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Vh(j) = Hh 0 h 4h0-l) + Hh Gh Uh(j) (2.3-3)

The matrices A and B of Eq. 2.2-2 can be easily de-

rived from Eqs. 2.3-1 and 2.3-3 as follows. Let vk be a crit-

ical time. The first M states of X d, those corresponding to

the unit hydrograph, are governed by Eq. 2.3-1 when j is re-

placed by (vk)0 , j-1 by (vk)-, and uh(j) by x 7 1 (vk)-], the

latter being the current value of the accumulated channel in-

flow. The last state of xd' the accumulated channel discharge

at time (vk)0 , can be written as the sum of the previous con-

tents of the accumulator, xl0+M[(vk) 1, and the present con-

tribution from the channel routing system given by Eq. 2.3-3,

i.e.,

Xe0+M[(vk) ° ] = xl0+M[(vk)-] + Hh Oh Xh[(vk)-I

+ Hh Gh x 7(vk)-J (2.3-4)

The matrices A and B are

0

Oh M (2.3-5)

~0

Hh~h 1

0. .01 :0 0

G h  M

B . h (2.3-6)

0 . . . 0 0 ()2 - . . .

~** h hi
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2.4 OPERATION OF THE MODEL IN THE SIMULATION MODE

Between two consecutive critical times (v-l)k and vk.

The equations for the continuous part of the system,

xc(t) = F (X (t),t) + G t(t) (2.4-1)

are linearized at the operating point corresponding to time

t 0 =vk. The resulting linear equations

xc(t) = F cx c(t) x c(t )] + h + G c(t) (2.4-2)

with

~ F
F -c (x (t ),to ) (2.4-3)
c axT -c o o

-c

and

h = F (x (t )t 0) (2.4-4)-c -- c o

are used to obtain a first approximation to the state values

at time t +A with A = vk - (v-l)k = k.

The state vector at the end of the t ime interval of

length , is the value of the solution to Eq. 2.14-2 1at time

t +A. This value, denoted by xc(t +A), is found to be
0) c 0

x'(to+A) = x (t ) + (O (A)-I) F h + t' (2.4-5)
-C -c O C

where I is the identity matrix, 4) (s) the transition matrixe

for an interval of length s given by

F S

c
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and ' a vector randormly chosen from the multivariate normal

distribution with mean zero and covariance matrix

q 4 ( G G'4T( A-s) ds (2.4-7)

The vector ' accounts for the contribution of the random input.

., of the rainfall simulation model to the change in the state

values during the time interval of length A.

Because of the strong nonlinearities present in the

model, it is possible that the behavior of the linearized sys-

tem, Eq. 2.4-2, departs considerably from that of the nonlinear

system, Eq. 2.4-1, during the time of propagation: i.e., the

length of the time interval, A, may be inappropriately large

for a valid approximation. In order to avoid this difficulty'.

the length of the time interval for propagation of the lineair

system is chosen adaptively. The simulat ion ut i lizes a nominal

step length of A = k hr, but if any of a collection of intqual-

ities, W(x ,xc'') < 0, is violated, the length of the time inter-

val is halved and propagation is attempted anew. When propa-

gation for a subinterval is successfully completed, Eq. 2.14-1

is linearized at the new operating point, .A is set equal to

the time step necessary to reach the next critical t ilte and

the procedure is repeated.

Four inequalities were used in the simulation. The

first two place limits on the changes in the contents of the

upper-zone tension-water and free-water elements; thest, dit-

ferences are not allowed to exceed 1 mll ; i.tc.,

IxI t ) - x i(t o+,) 2./

*This amount is a conservative choice. Good re 5ults wele
obtained with its use.
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Ix(t o ) x(to+A) < 1 (2.4-9)

The third inequality concerns the percolation. It is required

that

P(X(to0)) + P(x (to+)

2 A < 1 (2.4-10)

The expression on the left in Inequality 2.4-10 is Simpson's

integration formula applied to the instantaneous percolation

rate, P. Thus, 2.4-10 can be interpreted as a limit on the

total percolation during the time interval of length A. The

last inequality sets a limit on the amount of surface runoff:

0O

[g(x2(t o ),x) + g(x (to+A),x2)12o2 2 A < 1 (2.4-11)

When the critical time vk is reached, the last value
of the continuous state vector, x , obtained by the propagation

of Eq. 2.4-1 is interpreted as x c(vk) 1. The corresponding
value of the discrete state is xdI(Vk)-I = xd[((v-l)k). The

discrete part of the model is updated next according to

XdI(vk) I = A Xdl(vk)-I + B x I("k)-] (2.4-12)

where the matrices A and B are given by Eqs. 2.3-5 and 2.3-6.

At this point in the simulation the output measurements,

Eqs. 2.2-7 and 2.2-8, are evaluated. It is convenient to intro-

duce a matrix notation for this (omputat ion. EIquat ions 2.2-7

and 2.2-8 can be represented as

y(vk) H(vk) xI(vk)°l + t(vk) (2.4-1,)
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where the quantities y, H and are given by

y =(2.4-14)
Yy 2

- -8 - - - M -

0 0 0 0 1/m)

(2.4-15)

= ( 2.4-1 6)t2

when v is a multiple of m; i.e., when there are raintall and

discharge measurements, and given by

y = Yl (2.4-17)

H (0 . . 0 : 1 0 . . . 0) 0) (2.4-18)

= - 1 (2.4-1)

when v is not a multiple of mk but is a multiple of Q, i.e..

when there is only a rainfall measurement. If v is not ai mul-

tiple of 2 there are no measurements computed. In the above

equations tj and t2 represent measurement noise. Their values

are independent samples from the normal distribution with zero
2 2

mean and variances a1 and a2, respectively.

Since the filter is not in operation, the definition
+

of time (vk) is superfl-,ous in the simulation mode. Equivi-

lently,

xt(vk) + ] = x[(vk)0 1 (2.4-20)
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As a final step of the state propagation correspond-

ing to a critical time, the contents of the appropriate ac-

cunulators are reset to zero, i.e.,

x7 [(vk) r = 0 ; v = 0, 1, 2 .... (2.4-21)

x9 k(vk)r, = 0 ; v = 0, P, 2, . . (2.4-22)
9r

X10+M I(vk)r I = 0 ; v = 0, mf, 2m), ... (2.4-23)

and propagation of the continuous part of the state vector to

the next critical time begins.

2.5 OPERATION OF THE MODEL IN THE FILTERING MODE

The operation of the filter follows in the same lines

as the simulation procedure described in Section 2.4. The

system equations are identical to the equations used in the

simulation mode except that the rainfall filtering model is

used instead of the rainfall simulation model. The state-

estimates, x, are propagated according to the equations

c(t) Fc (k c(t),t) ; t F ((v-1)k,vk) (2.5-1)

d (t) = 0 ; t - ((v-l)k,vk) (2.5-2)

Rd0(vk)°l = A kd (vk)I1 + B R f(vk)'] (2.5-3)

However, in order to compute the Kalman gains, it is necessary

to propagate the state error covariance matrix, P(t), defined

by

P(t) = E{[! (t) - x(t))l 1I (t) - x(t)) T  (2.5-4)
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Following the subdivision of the state-vector into
its continuous and discrete parts, x and x. , define

P (t) E{IRt) - X (t) [R (t) - X (t)] (2.5-5)

Icd (t) = E [RC (t) - (t)) !xd(t) - Xd(t)]T (2.5-6)

d ) t P 'd(t) (2.5-7)

Pd(t) E{[lId(t) - Xd(t)] [._d(t - )T (2.5-8)

Thus P(t) is partitioned as

/P(t)'P (t)
P(t) -c C cd -- (2.5-9)

\Pd t Pd(t)Pdc , d(t

The operation of the filter is best described in the
form of an algorithm.

Filtering Algorithm

1. [Initialize elapsed time, state-estimates and error covari-
ance matrix]

Set t - 0, Rq _- R(0), PC Pc (0), Pcd 'cd( 0 ) Pd ' Pd(0)

2. [Initialize step size, A, and time to reach next critical
time, A.I

Set A - k, A - k

3. [Linearize Eq. 2.5-1 about current operating point l

aF
Compute F - (= ,t) h = F (. 't)c T -c . c-c

-C

4. [Evaluate transition matrix]

F A
Compute 4 =e c

c
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5. [Compute tentative state-estimate]
-1

Set R- + -) F h
-c -c c c

6. (Verify suitability of step size]

If none of the inequalities W(JcXcSK) < 0 is violated go to
step 8 (W is defined by Eqs. 2.4-8 through 2.4-11)

7. (Redefine step size]

Set A - A/2 and go to step 4

8. [Update state-estimate, elapsed time and time to next
critical time]

Set R <- k' t - t+A , A A - A
-c -C

9. (Propagate covariance matrix to account for continuous
transition]

TSetP PT + Q, P 0 P
c c c c cd c cd

where Q is the matrix defined by the expression on the right
of Eq. 2.4-7.

10. (Verify if critical time has been reached]

If A / 0 set A - A and go to step 3

11. [Propagate discrete part of state vector]

Compute state vector at time to by setting

R d - A R d + BJ c

12. (Propagate covariance matrix to account for discre te
trans ition]

Se TAT ATT BT
Set Pd A Pd AT + B PdA + (B Pcd A) + B Pc B

and ~ AT + P BT
and Pcd Pcd c

in the above order

13. [I)etermine if there is a precipitation measurement I

If t is not a multiple of jek then

13.1 (Reset channel inflow accuulator]

State at time r obtained by setting 7* 0
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13.2 [Modify covariance matrix to reflect reset]

Set the seventh row and column of P equal to zero

13.3 Go to step 2

14. [Determine if there is a discharge measurement]

If t is a multiple of m.k set FLAG - TRUE

If t is not a multiple of mQk set FLAG - FALSE

(FLAG = TRUE indicates the presence of a discharge measurieiVriL)

15. [Define measurement equations]

If FLAG = TRUE define H as in Eq. 2.4-15 and set
2(oT 022

y ) , R 12G2 0 0

If FLAG = FALSE define H as in Eq. 2.4-18 and set

2y (- Yl R <- o1

(yl and Y2 are the values of the rainfall dnd mean discharge

measurements, R is the covariance matrix of the errors in
the measurements)

16. [Compute Kalman gains]

Evaluate K = P HT(HPH
T + R)

1

17. iPerform Kalman update on state-estimatel
+

State at time t is obtained by setting

- k + KIy-HWI

18. [Modify covariance matrix to account for Kalman update]

Set P + P - KHP

19. [Reset accumulators]

19.1 Set R )7  0 and )9 ' 0

19.2 If F LAG T RUE set R 10+M 0

2-39

A



r p • ..... * - . .. . -

THE ANALYTIC SCIENCES CORPORATION

20. [Modify covariance matrix to account for reset]

20.1 Set the seventh and ninth rows and columns of P
equal to zero

20.2 If FLAG = TRUE set the last row and column of P

equal to zero

21. [Continue operation)

Go to step 2

2.6 RESULTS

The parameters of the SSM model for the Bird Creek

and White River basins were used in testing the behavior of

the simulation and filtering algorithms described in Sections

2.4 and 2.5.

In all instances data were generated using the model

in the simulation mode. These data were then used by the fil-

ter to obtain six-hour lead forecasts under several assumptions

on the filter parameters. The results so obtained were then

compared to tbh true values obtained in the simulation. Excel-

lent agreement between true and predicted discharge was obtained

in all test cases.

The Bird Creek basin model was used to investigate

the sensitivity of the filter behavior to changes in the ut.as-

urement error covariance matrix, R, and to changes in the ini-

tial state error covariance matrix, P(0). The White River

basin model was used to illustrate the filter response for a

different set of SSM parameters.

The parameters of the SSM mode I for the Bird Creek

and White River basin are listed in Table 2.6-1. In addit in
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TABLE 2.6-1

SSM. MODEL PARAMETERS FOR BIRD GREEK
AND WHITE RIVER BASINS

PARAMETER BIRD CREEK WHITE RIVER

-N 0 (Mm) 120 50

x(Mm) 15 30

x(mm) 160 250

x(Mm) 140 80

x(mm) 14 170

d (1/hr) 1.486E-2 1.486E-2

d' (1/hr) 5.452E-4 5.875E-4

d" (l/hr) 5.612E-3 2.578E-3

y 48 2.5

Of 2.1 '4.0

Pf 0.02 0.4

tp 3.55 0.0

a1  0.17 0.0

a 2  0.001 0.0

r 0.3()'

s 0.0 0.2

to the parameters given in the table, constant rates of u.)

1.375E-2 mm/hr and u 2 = 4.583E-2 mm/hr were used for thc in-

s tan t aneous pot en t i a I evapo t ransi) i ra t i on (Idmand fo r Ihc h rd

Creek and White River hasins, respec'ticv
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Fifth-order state-space models for the six-hour unit

hydrographs for the Bird Creek and White River basins were

used. These models were obtained with the subroutine REDO-UHG

(Ref. 1) delivered to NOAA/NWS for use as a constituent of

the Version 5.0 NWSRFS Forecast Component. The theoretical

basis underlying the operation of this subroutine is described

in Chapter 3 of this report. Figure 2.6-1 compares the origi-

nal Bird Creek hydrograph (solid line) with the approximation

used in the simulation and filtering algorithms (dashed line).

The White River basin hydrograph (Fig. 2.6-2) contains five

lags and, thus, agrees exactly with the fifth-order state-

space model used in the simulation and filtering algorithms.

For the Bird Creek basin the initial state values

were chosen arbitrarily as x](0) = 100 mm, x 2 (0) = 12 nun, x 3 (0)

= 130 mm, x4 (0) = 110 mm, x5 (0) = 11 mm, and x (0) = 0 for

i > 5. These values were the same in the simulation and fil-

tering operations.

For the Bird Creek model, different random number

sequences were used in testing the sensitivity of the filter

response to changes in the measurement and initial state error

covariance matrices. The particular precipitation records

included in this section are not typical of the results pro-

duced by the rainfall simulation model. They were chosen be-

cause the substantial amounts of rainfall obtained with the

particular random number sequences excite extreme dynamical

responses in the system and serve to illustrate the behavior

of the filter in the no+,linear operating region for the upper-

zone elements.

The precipitation record of Fig. 2.6-3 for the Bird

Creek basin was used in determiiiing di fferences in f iI ter re-

sponse to changes in the measurement error covariadnce mat rix.

R. This precipi tal ion record is referred as BCI in the sequel
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Bird Creek Unit Hydrographs
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Figure 2.6-1 Six-Hour Unit Hydrographs for Bird Creek:
Original Hydrograph (Solid Line) and Fifth-
Order State-Space Approximation (Dashed Line)

White River Unit Hydrograph
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Figure 2.6-2 Six-flour Unit Hlydrograph for Whit l River Buisin
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Six-Hour Accumulated Precipitation

25

feen asumtin ontemaueetnielvl iuae

were prdue atsxhu neras hsIn h oaino
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- I

ane mri

Figure 2.6-3 Precipitation Record BCi

For the comparisons of filter performiance under dif-

ferent assumptions on the measurement noise level, simulated
values of accumulated precipitation and instantaneous discharge

were produced at six-hour intervals. Thus, in the notation of

previous sections, the values of k, , and m were kf6, c-1 and
m1l.

Resul ts for two di fferent mleasur-emelnt error c(ovdr j -

ance mlatric:es are illustrated in Figs. 2.6-4 througlh 2.6 -l).

Solid lines represent the values obtained in the simulation

while dashed lines correspond to the ene-step ahead (six ho)ur)

filter prediction. Even numbered figures correspond to the.

measurement covariance matrix

R 0.0054 0 8) (2.0-1)

k] = 0 00 3(
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Upper-Zone Tension-Water Element

-5-

I I0

,IME ~v:-

Figure 2.6-4 Upper-Zone Tension-Water Content for
Precipitation Record BCl: True Values
(Solid Line) and Predicted Values With
Measurement Covariance RI(Dashed Line)

Upper-Zone Tension-Water Element

*00

Figure 2 .6-5 Upper- Zone Tens ion -Wat er C:ontc n for
Preci pit at ion Record1 BCI: Tru c ValIuecs-
(Solid Line) and Predicted Values With
Measurement Covariance (D2 ashed Line)
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Upper-Zone Free-Water Element
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Figure 2.6-6 Upper-Zone Free-Water Content for

Precipi.-ation Record BCl: True Values
(Solid Line) and Predicted Values With
Measurement Covariance R1 (Dashed Line)

Upper-Zone Free-Water Element
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Lower-Zone Tension-Water Element
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Figure 2.6-8 Lower-Zone Tension-Water Content for
Precipitation Record BCI: True Values
(Solid Line) and Predicted Values With
Measurement Covariance R I (Dashed Line)

Lower-Zone Tension-Water Element

Figure 2.6-9 Lower-Zone Tension-Water (ontcntl forc
Precipi Cat ion Record BC1: Tru- \'iI u-,
(Solid Line) and Predicted Va I Uvs With

bib.

MesrmntCvr nc (/se iL
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Lower-Zone Primary Aquifer

ie~

i5 -Z

Figure 2.6-10 Lower-Zone Primary Aquifer Content for
Precpittio ReordBCl: True Values

(Solid Line) and Predicted Values With
-'Measurement Covariance R(Dashed Line)

Lower-Zone Primary Aquifer

-ME ~a
Figure 2.6-11 Lower-Zone Primary Aquifer Content for

Precipitation Record B(.I: True Values
(Solid Line) and Predicted Values With
Measurement Covariance R2(Dashed Line-)
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Lower-Zone Supplementary Aquifer
12

10 -

57

IME_ ,cc'vs}

Figure 2.6-12 Lower-Zone Supplementary Aquifer Content for
Precipitation Record BC1: True Values (Solid
Line) and Predicted Values with Measuremcnt
Covariance R 1 (Dashed Line)

Lower-Zone Supplementary Aquifer

5-

F igu re 2.6- 13 Lower- Zone Suppleenltar , W (ILII fur Cont uflt
for Precipi tat ion Rccord BW] True Valu'.s
Solid Line) and Pred icted Val uct WithI

Measurement Covari ance R 2 (D~ashed Line)
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AD IMC- UZTWC
100

404

TME cVyS;
Figure 2.6-14 Excess of the Additional Impervious Area

Content Over the Upper-Zone Tension-Water
Content for Precipitation Record BCJ:
True Values (Solid Line) and Predicted
Values with Measurement Covariance R

(Dashed Line)

tt

TI4E oz~s

Figure 2.6-15 Excess of the Addit ional Iml'r, j ' ,us Arc.,
Content Over the Uppcr-Z/ne. lcrn. ion-Watc r
Content for Precipit ation Rct.'rd BCI: True
Values (Solid Lint,) and [red ict ed Vl ues
with Measurement Covariance R 2 (Dashed Line)
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Six-Hour Channel-Inflow
31

30 -

1C-

T;ME (acys

Figure 2.6-16 Six-Hour Accumulated Channel-Inflow for
Precipitation Record BCl: True Values
(Solid Line) and Predicted Values With
Measurement Covariance R(D~ashed Line)

Six-Hour Channel-Inflow
35

ip

Figure 2.6-17 Six-flour Accumulated ChanncL-lnflow fo.
Prec'ipitat ion Record BCI: True V alues
(Solid Line) and Predicted Values With
Measurement Covariance R 2 (Dashed Line)
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Discharge Rate
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Figure 2.6-18 Instantaneous Discharge for Precipitation

Record BCI: True Values (Solid Line) and
Predicted Values with Measurement Covariance
R (Dashed Line)

Discharge Rate
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Figure 2 6-19 Instantaneous Discharge for Precipitation
Record BCI: True Values (Solid Line) and
Predicted Values With Measurenment Covaridnct-
R2 (Dashed Line)
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The root-mean-square (rms) errors associated with R I are o1

0.073 mm for the precipitation measurement and a2=0.29 m3/sec

for the discharge rate measurements. These values correspond

to errors of round-off to the closest 1/100 of an inch for

precipitation and 1 m 3 /sec for discharge. Odd numbered fig-

ures correspond to the covariance matrix

R2  ( (2.6-2)

for which the rms errors are five times larger than those of

R1 •

The predicted values of instantaneous channel dis-

charge obtained with the use of the covariance matrices R and

R are presented in Figs. 2.6-18 and 2.6-19, respectively.

The predicted discharge agrees better with the true values

when the larger covariances are used. The rms difference be-

3tween predicted and true discharge is 7.8 m /sec for R I and

7.2 m 3 /sec for R The same type of observation applies to

all states of the SSM model (Figs. 2.6-4 through 2.6-17) ex-

cept for the lower-zone supplementary free-water content (Figs.

2.6-12 and 2.6-13) where the fi. obtained with the use of R

is slightly better than that obtained with R 2..

The fact that larger measurement error covariances

produce better results can be explained as follows: With a

small measurement error covariance the measurements are pre-

sented to the filter as being extremely precise. As a conse-

quence small differences between the predicted and measured

values are heavily weighted by the fiIter (i.e., the Xaliman

gains are very large). The filter responds quickly to dif-

ferences between est imated and observed ,'a Iues and tends t o

have a fast oscillatory response. This behavior is part icu-
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larly well exemplified in the estimates of the upper and lower

zone's tension-water content (Figs. 2.6-4 and 2.6-8). Note

that these oscillations happen to occur when the upper-zone

tension-water element is full and in some instances (see Fig.

2.6-6) when surface runoff is being produced. When the meas-

urement error covariance is increased, the filter places more

trust in the estimates it is computing and small differences

between predicted and measureed values are given less emphasis.

The response of the filter is somewhat slower but its overall

performance is improved.

The initial state covariance matrix, P(0), used in

obtaining the results given in Figs. 2.6-4 through 2.6-19 was

taken to be a diagonal matrix, P', whose elements along the dia-

gonal were Pl 1  m = 0.0225 2 P 33 2.56 nu, 2
2 = 0 .096 nun 2 , m 2  = 0

P44 = 1.96 mm P5 5 = 0.0196 nuP2, P 66 = 2.56 m and P!.1 0
for i > 6. These values correspond to an initial state uncer-

tainty of 1% of the capacity of each of the elements of the

SSM model.

In order to examine the behavior of the filter for

different assumptions on the initial state uncertainty, a coim-

parison was made of the results obtained for the Bird Creek

model with the use of the initial state covariance P' and those

obtained with a larger covariance matrix, P", with diagonal
elements P h = 144 nun2  P22"- 2.25 2 2 =  256 ,1n- , P --

14 p22  2.2 mm "3  445 111

196 m 2 , p' 1.96 mm2, = 256 mm 2 and p'!. = 0 for i 6,16mP55 =196 mm ' P66 =i 11

corresponding to an rms uncertainty of 10% of the capacity of

*The maximum value of x6, the excess of the additional imper-

vious area content over the upper-zone tension water content

is x(, the capacity of the lower-zone tension waiter clu.ment
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the states of the SSM model. Six-hour measurements of pre-

cipitation and instantaneous discharge were used by the fil-

ter. The measurement error covariance matrix was R 2.

To prevent the state-covariance from changing sig-

nificantly from its initial values before abrupt changes in

the system occur, the precipitation record BC2, shown in Fig.

2.6-20, was used in the comparison. The results are presented

in Figs. 2.6-21 through 2.6-36. Odd numbered figures corre-

spond to results obtained with the initial state covariance

P', even numbered figures to those obtained with P". As be-

fore, true values and one-step-ahead filter predictions are

indicated by solid and dashed lines, respectively.

Six-Hour Accumulated Precipitation

25

20 i° II

15

I-

i II

0~ ' A A
0 5 10 15 20 .5

TIME (days)

Figure 2.6-20 Prec ipi tati on R(.(vord BL2
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Upper-Zone Tension-Water Element
125

: -

EE

I-I

TIME (days)

Figure 2.6-21 Upper-Zone Tension-Water Content for

Precipitation Record BC2: True Values

(Solid Line) and Predicted Values With

P(O) = P' (Dashed Line)

Upper-Zone Tension-Water Element

z

110

100 0 5 10 is 2 0 2 t 3 0

TiME (days)

Figure 2.6-22 Upper-Zone Tension-Water Content 
for

Precipitation Record B(2: True cValues.

(Solid Line) and Predicted Values 
With

P(O) = P" (Dashed Line)
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Upper-Zone Free-Water Element

16

1220

TIME (days)

Figure 2.6-23 Upper-Zone Free-Water Content for
Precipitation Record BC2: True Values
(Solid Line) and Predicted Values With
P(O) = P' (Dashed Line)

Upper-Zone Free-Water Elemient

16

0 602

TImE (davs '

Figure 2 .6-24 EUppe r- Zone V re - Wa t er (A Aflte Cfl

1Prec'ipitat ion Recordl BC-) IruC Va i ues
(Sol id Line) and P'redi cted Values- With
P(O ) P" MIashed Line)
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Lower-Zone Tens ion-Water Element

EI
z 145A

130' 0 2

7I1ME (days)

Figure 2.6-25 Lower-Zone Tension-Water Content for
Precipitation Record BC2: True Values
(Solid Line) and Predicted Values with
N(O) = P' (Dashed Line)

Lower-Zone Tension-Water Element
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z
Q

140-

1332
.30

0 
1 0 

2 55C

Figure 2. 6-20~ Lower-Zone Tension-Water Cont ent for
Prec ipit at ion Record BC2: True \%J I Juts
(Solid Line) and Predicted VaILueS With
I'M) = P (Dashed Line)
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Lower-Zone Primary Aquifer
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Figure 2.6-27 Lower-Zone Primary Free-Water Content
for Precipitation Record BC2: True
Values (Solid Line) and Predicted

Values With P(O) = P' (Dashee Line)

Lower-Zone Primary Aquifer
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85
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TIME (cays)

Figure 2.6-28 Lower-Zone Pri mary Free-Wat er C()ntnt t ,r
Precipitation Record BC2: T ru . Valu.s

(Solid Line) and Predicted Value,, with
P(O) = P" (Dashed Line)
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Lower-Zone Supplementary Aquifer
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E
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z

P(O) = I DaheLne

Figue 2.-29 Lower-Zone Supplementary AufrWarCntn

12'-
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71mE (days2
Figure 2 .6- 30 Lower- Zone Suppl1 eiun ta ry F rev -Wa t er Con t nt

for P rec'i pit at ion Rec ord BC2: 'r rue a u

Solid Line) and Predicted Values With
P(0) =1" (Dashed Line)
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ADIMC-UZTWC
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40- -
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Figure 2.6-31 Excess of the Additional Impervious Area
Content Over the Upper-Zone Tension-Water
Content for Precipitation Record BC2: True
Values (Solid Line) and Predicted Values
with PNO) = P' (Dashed Line)
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Figure 2 .6-32 Excess of t he Add i t i ofld I Imipe rvious Arv- i
Con ten t Over the Upper - /Wn( [ens ion -Wd t er
Con ten t for Prec ip it at ion Record BC2: Tr ru
Values (Solid Line) and Predicted Values
With P(O) = P" (D~ashed Line)

2-61



THE ANALYTIC SCIENCES CORPORATION

Six-Hour Channel-Inflow
251
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Figure 2.6-33 Six-Hour Accumulated Channel-Inflow for
Precipitation Record BC2: True Values
(Solid Line) and Predicted Values With
P(O) = P' (Dashed Line)

Six-Hour Channel-Inflow,
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Figure 2.6-34 Six-H~our Accumulatted Channel-Inflow fur
Preci pitat ion Riecor'd BC2: True Va I]uc-s
(Solid Line) and Predicted Values With
P(O) "-F" (Dashed L ine)
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Discharge Rate
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Figure 2.6-35 Instantaneous Discharge for Precipitation
Record BC2: True Values (Solid Line) and
Predicted Values With P(O) = P' (Dashed Line)

Discharge Rate
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Figure 2.6-36 Instantaneous Discharge fur IPrecipit at ion
Record BC2: True Values (Solid Line) and
Predicted Values With P(O) = P" (Dashed L.ine)
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Surface runoff occurred on three different occasions:

on days two, three and twenty (see Figs. 2.6-23 and 2.6-24).

Instantaneous discharge plots are given in Figs. 2.6-35 and

2.6-36. For both initial state covariance matrices, the rms

differences between the predicted and true discharges are very

close: 7.2 m 3/sec for the case in which P' was used and 7.3
3m /sec for the case in which P" was used. The one-step-ahead

prediction of the values of the upper-zone states obtained

with the use of P' and P" (Figs. 2.6-21 through 2.6-24) are

practically identical and agree very well with the true values.

However, for the rest of the states of the SSM model (Figs.

2.6-25 through 2.6-32), the agreement between predicted and

true values is much better for the estimates obtained with the

use of P', the smaller covariance matrix. In fact, the same

input sequences were used in a filter in which the initial rms

values for the uncertainty in the values of the states of the

SSM model was set equal to 20% of the maxima of the state values.

This filter became unstable during the fifth day of operation.

Therefore, it is recommended that in practice, on-

line operation of the filter be started when there is little

uncertainty as to the correct values of the states (e.g., dur-

ing the dry season) or that previously collected precipitation

and discharge data be used to carry the filter into steady-

state. Another alternative is to try to identify the initial

state. This possibility is discussed in Section 4.

The White River basin model was used to test the re-

sponse of the filter for a set rf parameters other than those

of the Bird Creek basin. The initial state values in the sim-

ulation and filtering algorithms were arbitrarily chosen as

X1(0) = 40 mm, x2 (0) = 20 mm, x 3 (0) = 200 mm, x4(0) = 40 mm,

x5(0) = 100 mm and xi(O) = 0 for i > 5. For the filte-, the

rms uncertainty in the initial states was taken to be 1% of
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the element's capacity for the first six states and zero for

the remaining states.

Measurements produced by the simulation were precipi-

tation at six-hour intervals and mean discharge at 24-hour

intervals. Thus, k=6, k=i and mz4. The precipitation record

produced by the simulation is depicted in Fig. 2.6-37. The

measurement error covariance matrix used by the filter, R

was that implied by the covariance matrix R 2 for mean daily

discharge, i.e.,

R = (2.6-3)
3 '

( 0.52

Six-Hour Accumulated Precipitation

25

20

15 -

-5 0kO 
2TME (days)

Figure 2.6-37 Precipitation Record for White Rivt'r Bisin
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The results obtained are presented in Figs. 2.6-37

through 2.6-45. The excellent fit between the one-step-ahead

(six hours) predicted mean daily discharge and the true dis-

charge shown in Fig. 2.6-45 is typical of the results obtained

for both the Bird Creek and White River basins when there is no

surface runoff. The rms difference between the predicted and

true mean daily discharge is only 1.4 m 3/sec.

It was not possible to obtain simulation results for

the White River basin in which surface runoff appeared. Note

that even with the substantial amount of rainfall produced

during the last four days of simulation, the drainage and

percolation rates from the upper-zone free-water element (Fig.

2.6-39) preclude the value of the state from reaching its maxi-

mum and, thus prevent the appearance of surface runoff.

The same random sequence that was used in the simu-

lation to produce the precipitation record of Fig. 2.6-37 and

the mean daily discharge indicated by the solid line in Fig.

2.6-45 was used in a simulation in which the precipitation

record of Fig. 2.6-37 was reproduced but values of instantan-

eous discharge instead of mean daily discharge were generated

(k=6, Q=1, m=l). These results served as measurements for a

Kalman filter in which the initial covariance matrix was thc

same as in the previous case and the measurement error cov'.ri-

ance matrix was R The results for the instantaneous dis-

charge rate prediction are given in Fig. 2.6-46. The rms dif-

ference between predicted and true discharge is 3.8 m /sec.

*The expected monthly precipitation is /42 mm. Total precipi-
tation for the record of Fig. 2.6-37 is 86 niun. For the lisl
four days, the amount of precipitation is 53.7 mm.
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Upper-Zone Tension-Water Element
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42

0

0 5 10 15 20 25
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Figure 2.6-38 White River Basin. Upper-Zone Tension-Water
Content: True Values (Solid Line) and Pre-
dicted Values (Dashed Line)

Upper-Zone Free-Water Element

102

'4'

z I

5 5 20 25 2
Ti ME (days)

FigL.re 2.6-31) White River Basin. Upper-Zone Free-Water
Content: True- Val1ues (Solid( Lint- ) 'Alnd
Predicted Values (D~ashed Line)
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Lower-Zone Tension-Water Element
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Figure 2.6-40 White River Basin. Lower-Zone Tension-Water
Content: True Values (Solid Line) and
Predicted Values (Dashed Line)

Lower-Zone Primary Aquifer
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Figure 2.6-4] White River Basin. Lower-Zone I'rimar v Fret-
Water Cont ent : True Value, ( Sol id Line( drl(
Predicted Values (Dashed Line)
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Lower-Zone Supplementary Aquifer
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Figure 2.6-42 White River Basin. Lower-Zone Supplemnentary
Free-Water Content: True Values (Solid Line)
and Predicted Values (Dashed Line)
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Six-Hour Channel-Inflow

3-

2.5-

0 5 10 15 20 25 3

TI ME (days )

Figure 2.6-44 White River Basin. Six-Hour Accumulated
Channel-Inflow: True Values (Solid Line)
and Predicted Values WIashed Line)
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Figure 2 .0-45 Wh it R Rive r B~as i n. Near D~ai IY 1) i St.ii drgc
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Values ( Iasled Line)
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Discharge Rate

250-_ _ _ _ _ _ _ _ _ _ _ _ _ _

2004

z
0
U
W
Li,

Q: 150-

Ui

W 100-

50

0 5 0 ~ 5 20 25
TI ME (days)

Figure 2.6-46 White River Basin. Instantaneous IDischarge-:
True Values (Solid Line) and Predicted Values
(Dashed Line)

The results obtained show that notwithsttanding thte

strong nonlinearities of the soil moisture model , the extend(I

Kalman filtering technique described in Sect ion 2.5 performs

extremely well on the combined basin model. The occurrence ()I

the peaks of the predicted discharge and their mlagni tude agree

very well with the simulation results.
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3. STATE-SPACE MODEL DEVELOPMENT FOR
UNIT HYDROGRAPHS

The objective of the work performed under this task

was to develop a computer program which will create state-

space models approximating the impulse response of a unit hy-

drograph. This computer program is intended to be included in

the NWSRFS forecast component. A users manual documents the

computer program and its operation in detail (Ref. 1). The

computer program has the following capabilities.

0 Creation of a discrete-time state-space
model (with selectable output time step)
based on the input of a unit hydrograph

* Production of an output file of river
discharge predictions calculated from
the state-space model and an input file
of channel inflow values

0 Output of graphical summtaries and tabula-
tions of the state-space model impulse
response, and the squared magnitude spec-
trum and phase spectrum of the transfer
func t ion.

The canonical variate method is used in th(. apt)wlNi-

mation of unit hydrographs by reduced-order mo(els ()f stiat,.-

space form. This section describes the mathematical mctho(d by

which the state-space models are created and presents somie

results based on unit hydrographs supplied by NOAA/NWS to "IASC

for use in this study. Section 3.1 formulates the pirl)lem (,f

unit hydrograph approximat ion as a reduced-()rder i lt(.t-itrL

probleIem. Section 3).2 presents the (')ncel)t ()f canon icak' A n le

(lecomposit ion ()f the past and fut tre ()f a rand()m l)r,(,.Es.. Thc

3- I 
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in Section 3.3. The decomposition of past and future is used

in Section 3.4 to compute explicitly the optimal reduced-order

state-space model. Section 3.5 presents results of ihe appli-

cation of this method to unit hydrograpis supplied by the NWS.

3.1 FORMULATION OF THE PROBLEM

Consider the problem in which a unit hydrograph h(T)

is given that specifies the response at lag T to a unit input

at time zero. It is desired to find a state-space model, pref-

erably of low order, which is a good approximation in some

sense to the given unit hydrograph. This problem cannot be

separated from the characteristics of the input process since

the modes of h(T) that are excited and, hence, the output de-

pend strongly upon the input process. Nominally, it will be

assumed that the input process is white noise which excites

all frequencies proportionately. If the typical input signal

power spectrum is known and different from white noise, this

fact can be easily included in the method described below and

would lead to an alternative approximating state-space model.

It will be shown in Section 3.5 .hat the white noise assumpt ion

leads to excellent approximations of the unit hydrograph with

low order state-space models.

A schemaitic lescript ion of the problem is shown in

Fig. 2.1-1. The problem of determining a state-space model

which does a "good" job of predicting the output x,(t) from the

input u(t) can be viewed as a reduced-order fil.tring problem.

Consider u(t) and v(t) as two related random processes. (In

Section 3.4.3 we will consider the case ()f a vector output

process v(t).) Given the past of u(t) for t=0,-_I ..... it is

desired to predict the future evolution of \'( t) for t 1,2......

A recursive or state-space filter of some specified statt. €orde
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R-45964

u(t) -WHITE CANLUI

NOISE INPUT HYDROGRAPH v(t) OUTPUT

REDUCED-ORDER .

STATE-SPACE ;(t) ESTIMATE
FILTER ) ~)ETMT

Figure 3.1-1 Approximation of Unit Hydrograph
by a Reduced Order Filter

will be derived from the unit hydrograph. The approach and

criterion of approximation is described in the next two sec-

tions, and the filter derived in the following section.

3.2 CANONICAL VARIATE DECOMPOSITION OF PAST AuN) FUTURE

The central concept in the approach invol\'es use of

the canonical variate decomposition of the past of one randoiii

process and the future of another process (Refs, 9, 10, and

11). This corresponds to a particular coordinatization of the

predictor space (Ref. 12) in a way that leads very natural'y

to the selection of reduced-order models and filters which are

optimal in several senses discussed in Section 3.3.

Suppose u(t) and \'(t), for t an integer, are- time

series which are jointly stationary in the wide sense. We are
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primarily interested in prediction of the future evolution of

M(t) based upon the past realization of u(t) and so consider

the two vectors of random variables

u(t) v( t+l)
u(t-l) v( t+2)

Zlpt) = ,1)2(t) . (3.2-1)

u(t-p+l) v(t+p

where p is some specified number of shifts. We call z1 (t) the

past of u(t) and z2 (t) the future of %,(t). The integer p is

generally somewhat larger than the maximal "state" order to be

considered but, in theory, may be infinite.

In the reduced-order filtering prchlem, the relation-

ship between the past zl(t) and the future z2 (t) is to be ap-

proximated by a Markov process model of specified state order

k. In particular, the kth-order state expressible as k linear

combinations of the past zI(t) that best predicts the tuture

2 (t) is to be determined. For the immediate discussion "best"

means best percent error prediction which corresponds to maximal

reduction in error in prediction of z2 (t) on a percent error

basis as given by the canonical correlation criterion discussed

in Section 3.3. The best k linear combinat ions of zl(t ) tfr

predicting z2 (t) are those having maximal correlation with

z 2 (t). Finding these best linear combinations of zl(t) having

maximal correlation with z2 (t) is precisely the classical canoni-

cal correlations and variates problem of mathematical statistics

(Refs. 13, 14). The more general canonical prediction criterion

is discussed in Section 3.3.2 as a simple modification of the

classical canonical correlations and variate problem. Thet

solut ion to the canonical variate prob lem is obtained by put -

ting the covariance st ructure of z t ) and z2,(t) in a canonical
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form. Nonsingular transformations, J and L, of the past z1

and future z2 to new sets a and b of canonical variables or

variates

a = Jz2 ' b = Lz2  (3.2-2)

are to be found such that in this new basis the correlations

between the past a and future b have a canonical structure

cov(a,a) = I, cov(b,b) I

r0

cov(a,b) r2  (3.2-3)

0 0

with the canonical correlations rI > ... > r > 0 in descending

order. Thus, the components of the past a are mutually uncor-

related as are those of the future b. Of all linear combini-

tions of z and z2 the first component of a has maximum cor-

relation with the first component of b. It can be shown. for

any order k, that the first k components of a ( i e. , corr,-

sponding linear combinations of the past z1 ) lead to thk best

prediction of the future z2. The canonical correlations

r k+..... r corresponding to the neglected va!riables give a

measure of the amount of information lost in uf;ing k rather

than R components. The requirements of 3.2-3 are equivalent

to finding J and L such that
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rI

J cov(zl, 2 )L T  =r (3.2-4)
0

0 0

T TJ cov(zlz )J I, L cov(z2 ,z2L = I (3.2-5)

This is easily accomplished using a singular value decomposi-

tion (Ref. 15) which is computational]y very efficient and nu-

merically very accurate and stable. Dimensions of z (t) and

2 (t) as high as several hundred can be handled efficiently

and accurately using these computational techniques.

3.3 OPTIMALITY OF CANONICAL VARIATE ANALYSIS

The canonical variate analysis described above provides

an optimal choice of a restricted number of random variables

from one set for prediction about a second set of random vari-

ables. As classically formulated in Ref. 13, this involve,_, a

canonical correlation criterion which is optimal in the st-ns-e

of

* Maximizing correlation between the ob-
served set and the predicted set of
random variables

" Maximizing the mutual infformation be-
tween the chosen variates used for pre-
diction and the variables predicted.

3-6



THE ANALYTIC SCIENCES CORPORATION

A new generalization, the canonical prediction criterion, is

also discussed below which is optimal in the sense of

0 Minimizing the expected weighted squared
prediction error.

The canonical prediction criterion applied to unit hydrographs

gives much lower order state-space models which adequately

approximate the unit hydrographs. Comparisons of state-space

models fitted using both the canonical correlation and pre-

diction criteria are given in Section 3.5.1.

3.3.1 Canonical Correlation Criterion

The canonical variate problem was originally formu-

lated (Ref. 13, also see Ref. 14) as a sequential selection

procedure. As discussed in Section 3.2, the procedure is con-

cerned with the optimal selection of k linear combinations of

a vector z of random variables for optimal prediction of a

related vector z2 of random variables. First a pair of linear

combinations a ! 1 and b1 = T 2 of the respective vectors

of random variables z1 and z2 are determined which have maximal

correlation. Next, a second pair a2 =Tz 1 and b2 = 2 are

found which are uncorrelated with a1 and bI and which have

maximal correlation. The procedure continues up to the speci-

fied number k of linear combinations of z which are permitted.

Thus the canonical variate procedure finds the k mutually uncor-

related components of z which are maximally correlated with

z2" Hotelling (Ref. 13) defines an intuitive scalar measure

of correlation between the two vectors of random variables z1

and z2' called the vector correlation coefficient, which is

simply expressed in terms of the non-zero canonical correla-

tions rI , .... rn as
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Q2 = rlr 2 ... rn (3.3-1)

It can be shown that the choice of k linear combinations of z,

which have maximal vector correlation coefficient are the first

k canonical variates.

The canonical correlation method maximizes the mutual

information. Shannon and Weaver (Ref. 16) define the informa-

tion in one random vector z about another random vector Z2'

now commonly called mutual information, by

r P12(z1,z2) dz dz

J( 1 ;z2 ) =JP 12(z1iz 2 ) log p p2(12) -2

(3.3-2)

where the base of the logarithm is arbitrary and determines

the particular units of information, and where P1 2 is the joint

and p1 and P2 the marginal probability densities. Gelfand and

Yaglom (Ref. 17) showed that the mutual information is simply

expressed in terms of the canonical correlations r ,.... n

between the two vectors by

=-In r2  1J(lZ ) r log 0 .) - log w (33-3)

j=l j 2 o

where Hotelling (Ref. 13) defines the vector alienation coef-

ficient

w (1 r2) ... (1 - r2) (3.3-4)1 n

as a mcasure of independence of z1 and z2. Gelfand and Yaglow

(Ref. 17) extend the definition of mutual information to vectors
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of infinitely many random variables, e.g., random processes in

both continuous time and discrete time. This development also

provides the basis for extending canonical variates to random

processes (Ref. 18).

Now, if a restricted number k of linear combinations

(a1 ..... ak) of one random process u(t) are used to predict

another random process v(t), then the choice maximizing the

mutual information is the first k canonical variates and the

mutual information is expressed by the first k canonical cor-

relations

1 r 2
max J(a I .... ak;v(t)) = log (1

a 1  ... , ak j=l (
(3.3-5)

Thus the canonical correlation method provides an optimal pro-

cedure in terms of mutual information for choosing a finite

state representation of one random process for prediction of

another.

3.3.2 Canonical Prediction Criterion

A more general criterion of prediction error is the

expected weighted square prv.diction error

h(z2 - i_2)  = E(z2 - -2 )T  0-1 (Z (3.3-6)

where 0 is an arbitrary positive definite symmetric weighting

matrix, z2 is the minimum variance estimate of z.2 based upon

the k selected linear combinations of z , and E is expectation.

The optimal choice of k linear combinations of z that mini-

mizes h corresponds to the first k canonical variates for a

canonical correlation analysis with the "correlation" structure
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z 2 ) G21 01

although this is not, in general, a covariance matrix. That

is, the true covariance 2 22 of z 2 is replaced by the weighting

matrix 0. The minimum prediction error is simply expressed by

min h(z 2 - = tr 0 - 1  22 (r2 + 2.. + r2 (3.3-8)
2 222 -r 1  . k) 338

in terms of the canonical predictors r. which play the same
1

role as the canonical correlations.

Thus is can be seen that when 6 is set equal to 222'

the canonical correlation problem can be viewed as weighting

the squared error by the inverse covariance so that the per-

cent error or error relative to the variance of each variable,

is the criterion considered. The criterion given by Eq. 3.3-7

is more general than that usually considered in the canonical

variate method and permits arbitrary quadratic weighting of

the prediction errors.

Such weighting is particularly useful in reduced-order

state-space modeling of unit hydrographs and permits weighting

the more important variables to be estimated. In particular,

it is found that the criterion of the expected sum squared

prediction error

h(z 2 - _2 = E(z 2  2 )T (z 2 - i2 )  (3.3-9)

of the predicted future z2 gives markedly improved state-space

model approximations to some unit hydrographs. This corre-

sponds to setting 0 equal to I, the identity matrix.
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3.4 OPTIMAL REDUCED-ORDER MODELING

The canonical variates and correlations analysis is

used in this section to derive optimal reduced-order filters.

In the reduced-order filter problem, a process u(t) and a re-

lated process v(t) are given, and predictions of v(t) based

upon past observations u(t), u(t-1) .... using a reduced-order

filter are required. As in the canonical variate analyis in

Section 3.2, let zI(t) be the past of u(t) and z2 (t) be the

future of v(t) (e.g., Eq. 3.2-1).

3.4.1 State Vector Determination

For a given order k for a reduced-order filter, find-

ing a best k-element state is equivalent to finding the k linear

combinations of the past z T = (uOT(),u T(-1) .... ) which have
-IT = T Tthe best ability to predict the future z =( (1),T(2)....).

If the best predictive ability means to minimize percent error

in predicting all components of z2, then this problem is pre-

cisely the canonical variates and correlations problem of Section

3.3.1. Or more generally we can use the canonical prediction

criterion of Section 3.3.2. To solve this problem, nonsingular

transformations of the past z1 and future z 2 are determined

a = JZ1 , b = Lz2  (3.4-1)

such that in this new basis the past a and future b have a ca-

nonical structure as in (3.2-3).

Once the canonical variate problem is solved, an op-

timal reduced-order filter of order k can be determined for

each k<2 with the minimal-order realization given for k=V. If

k linear combinations of the past z, are to be used to predict

the future z29 then the optimal choice is the first k canonical
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variates. These k linear combinations specify the optimal

state vector of the kth-order filter. Specifically, the state

vector is

x(t) = Jkl(t) where Jk = (Ik' 0 ) (3.4-2)

with Ik the kxk identity matrix.

3.4.2 State-Space Realization

The remainder of the problem is to obtain a state-

space realization of the optimal reduced-order filter. In

particular, expressions for the calculation of the state-space

matrices in terms of the canonical variate analysis are needed.

The desired state-space form of the filter is

x(t) = 4x(t-l) + Gu(t) (3.4-3)

7(t) = Hx(t-l) (3.4-4)

with the output (7(t) the optimal reduced-order filter estimate

of v(t). The output v(t) is related to the state x(t-l) at

time t-l to insure a lag between the input and output, i.e.,

so that an input does not produce an instantaneous output.

This is a conventional discrete time system description - se

Section 3.4.4 for the modification involved when the input

u(t) is a continuous accumulation of channel inflow over the

time interval (t-l,t). By calculating the covariance of x(t)

with x(t-l) and u(t) using Eq. 3.4-3, the matrix 4 and G must

satisfy

I(xt tx ) = P t(x~ixti) + G2(ut,.X 1 ) (3.4-5)

I(xt4u t )  = V I(xt-,u t ) + G 2(ut,u ) (3.4-6)
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I PREDICTION I

I tj(tI f !4IAI

I ~ MEASUEMENTPREDICTION DEA1 GAIN C X' It-il

1 FILTERI

Figure 3.4-1 Partial Innovations Representation of
Optimal Reduced Order Filter

where 2( ,)denotes the covariance matrix between two vectors

and the shorthand xt4x(t) is used.

These equat ions are easily solved for (P and G expl icit -

ly in terms of the various covariance matrices. The filter

(3.4-3) and (3.4-4) can be put into feedback form

x(t) = A x(t-l) + K(u(t) - C x(t-l)) (3.4-7)

where the matrices A, K. and C are

A = A(xt,.X t-I ) (x ,'x 1-1)(.-)
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K = 12 (xttu t )  - ,2(.xt~x t_ 1 )  I-l(x t-1,Xt_ 1 )  2(X t-l'ut)

[ (u t tu t )  - 2 (U t x t 1 )  2 -- (x t -l X t _1)  (x t- l 'u t ) ]1

(3.4-9)
-1

tt(u ltt 1 )  1 (xt_1,t_1) (3.4-10)

The state-space form (3.4-3) through (3.4-4) has matrices P

and G given by

P = A - KC, G = K (3.4-11)

These matrices have a simple interpretation as regression coef-

ficients. The matrix A is the regression of x(t) on x(t-1).

i.e., the best prediction of x(t) given x(t-l). The term C

x(t-l) is the best prediction of u(t) based upon x(t-l). The

feedback gain matrix K is the regression of the conditional

random variables x(t) given x(t-l) on the' conditional random

variable u(t) given x(t-l). This gives the best prediction

of x(t) based upon u(t), having already accounted for the de-

pendence upon x(t-l). The quantity u(t) - c x(t-1) can be

called the partial innovations of the process u(t) with re-

spect to the past of the process x(t-l) (i.e., the new infor-

mation in u(t) uncorrelated with the past reduced-order states

x(t-1), x(t-2) .... ). The remaining quantity to be specified

is the prediction gain matrix

H = l(vt,x t_ ) -1 (x t xlXt_ ) (3.4-12)

for predicting _'(t) based upon x(t-l). The partial innovations

realization of the optimal reduced-order filter is illustrated

in Fig. 3.4-1 and has the same structure as the Kalman filter

in terms of optimal extrapolation, prediction of the measure-

inent , calculat ion of the part ial innovat ion and update (Rct.

19). The mat rices can be explicitly computed using Eq. 3.4-2.
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the covariance structure between z1 (t) and z2 (t), and the ca-

nonical form, Eq. 3.2-3.

3.4.3 Multirate Unit Hydrographs

There are a number of situations in which the channel

inflow is the result of accumulations of water over a time

interval greater than the time between discharge measurements.

For example accumulated channel inflow may be calculated every

12 hours corresponding to the precipitation measurements and

channel outflow is measured every 6 hours. To accommodate

this situation, a multirate state space model is needed which

has inputs every 12 hours and outputs every 6 hours. By prop-

erly setting up the unit hydrograph as a single input multi-

output unit hydrograph, the above algorithms apply exactly as

they are.

We make the following conventions. Let u(t) be the

input channel inflow, t=1,2, ..., with the input sample rate

normalized to 1 time unit. Let x'(t), t an integer, be the

vector of output channel outflow occurring at times [s-l < s

< Isl where Is] denotes the least integer greater than or equal

to s. Figure 3.4-2 gives an illustration of the input, the

output grouping and labeling, the unit hydrograph and the pulse

input used in its (Ietinition.

If At is the output sample rate then

output (t-l + At)

V,(t) =( . - 3

output (t-1 + rAt)

where r = 1/At . The vector unit. response funct ion g(T),

T=1......q, is defined in terms of the unit hydrograph h(i) b\
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INPUT I R-59560
LABEL u4-1 u0)u+1)

OUTPUT I I I I I I l I
LABEL ,. ',v .

LS

U

TIME t

9(0) 9(2) qjq)

Figure 3.4-2 Multirate Unit Hydrograph

&(T) (3.4-14)

h(T-1 + rat)

Once the conventions of v(t) as a vector output and

S(T) as a vector unit hydrograph are made, the canonical \'ari-

ate analysis and reduced order state space models are derived

as in Section 3.4.2. Note that the state space model operates

at the input sample rate so that the state vector only changes
when there is a new input.

The transfer function is a useful tool in studying a
multirate discrete time system. It can be used to describe

the response of the system to a sampled sine wave at the input.

In Section 3.5.2, an example will show that situations arise
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where the response to a sampled si-.e wave input at a given

frequency may include a substantial sampled sine wave compon-

ent at much higher frequency than the input. While this is a

difficulty in the present forecasting system due to multirate

unit hydrographs, it is completely avoided when using the con-

tinuous catchment model as in Section 2.

Consider the multirate system where u(t), t =

...-2r,r,o,r, ... , uk  = u(kr) is the input and v(t), t

-2,-1,0,l,2, ... is the output with r an integer. Let k and 2

be integers so that the output at time t = (k-1)r+P, 0 < k < r,

is related to the input by the finite unit hydrograph function

g. (T) as

q
v(kr+k-r) = I - g ( ) u(kr-Tr) (3.4-15)

To find the transfer function, we compute the Fourier

transform V(w) of v(t) for -n < w < n

(W) vt - iwt r 0 -iw(kr+R-r)S v(t) e E E (kr+-r) e
t = -O =1 k=-m

r -iw(V-r) q -iwrk

R=1 k=- T=1 k-

= e G (wr) 1 U(wr) (3.4-16)
2=1

where G (A) and U(A) are the Fourier transforms of g,(k) and

u k respectively.
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The transform U(A), - n < A < n, of the input process

Uk = u(kr) is periodic with period 2n and in (3.4-16) repeats

up to frequency A +nr. This is the Fourier extension or

Nyquist interpolation of the input to a higher sample rate.

The transfer function

r
G(w) = E e Gr(-) r) (3.4-17)

is then applied to this interpolated input function to obtain

the output function. If the input is a sine wave uk = sin(,\k+c,)

for 0 < A < n, then the output time function is

II'
v(t) - G(w) - sin( wt + arg G(w) + 0 ) (3.4-18)

WE:Q r

where Q is the periodic repetition of X in terms of the output
sample rate

0 = {w:w = r - r m Iw < 7T, m integer} (3.4-19)

3.4.4 Continuous Accumulation of Channel Inflow

There is a minor inconsistency between the usual way

of specifying a discrete time and a continuous time systecli in

terms of the unit pulse response and that of implementing a

continuous/discrete time filter. This requires a minor modi-

fication of the reduced order filter given by Eqs. 3.4-3 and

3.4-4.

Figure 3.4-3(a) shows a constant pulse input and the

resulting continuous unit pulse response in (b). A discrete

response is shown in (d) which is conceptually considered is
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R.59559

(a) CONTINUOUS PULSE INPUT

(b) CONTINUOUS PULSE RESPONSE

(c) DISCRETE PULSE INPUT

0

(d) DISCRETE PULSE RESPONSE

Figure 3.4-3 Relationship Between Continuous and Discrete
Time Unit Pulse Response

the response to an input (c) at time t = 0, i.e., the pulse

has been accumulated and applied at the time corresponding to

the pulse beginning. The discrete time system is constrained

so that there is no instantaneous output and hence no effect

occurs until the end of the pilse.
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The inconsistency occurs when a usual continuous/dis-

crete time filter is implemented as in Chapter 2. It is natural

in such recursive schemes to associate the end time of the

pulse with the accumulated channel inflow rather than the start

time of the pulse. If this convention is adopted then the

state space representation (Eqs. 3.4-3 and 3.4-4) is modified

to

x(t) = , x(t-l) + Gu(t) (3.4-20)

=,(t) Hx(t) (3.4-21)

where the quantity Hx(t-1) of Eq. 3.4-4 has been shifted one

time step. This applies to both the cases of single output

and multirate output unit hydrographs. Note the convention

that time is normalized so that the time between inputs is

unity.

Associating the input time with the end time of the

pulse also introduces a phase shift in the transfer function

(3.4-17) of eiwr. Consequently the transfer function is nodi-

fied from (3.4-17) to

r -iW2
G(w) = r W GR(wr) (3.4-22)

3.5 RESULTS

The reduced-order state-space modeling described above

has been applied to unit hydrographs for a number of basins

supplied by NWS. The character of the reduced-order models is

illustrated in Section 3.5.1 and described in more detail in

Refs. 2 and 4. The problem of spurious high frequency behavior

inherent in some multirate unit hydrographs is discussed in

Section 3.5.2.
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3.5.1 Reduced-Order State-Space Models

The differences in reduced-order models obtained from

the canonical correlation and canonical prediction criteria

depend very strongly upon the spectral shape of the hydrograph

transfer function. A striking comparison in fit using the two

criteria was obtained for the Bird Creek basin. The six-hour

unit hydrographs based upon the input hydrographs and the ca-

nonical correlation procedure are shown in Figs. 3.5-1 and

3.5-2 for 4- and 8-state models respectively. The respectively

squared magnitude transfer functions are shown in Figs. 3.5-3

and 3.5-4. Fits obtained using the canonical prediction proce-

dure are illustrated by the unit hydrographs in Figs. 3.5-5

and 3.5-6 and by the squared magnitude transfer functions in

Figs. 3.5-7 and 3.5-8. Note that even the 8-state unit hydro-

graph from the canonical correlation procedure has a signif i-

cant nonzero tail whereas the 4-state unit hydrograph from the

canonical prediction procedure produces an excellent fit.

Figures 3.5-3 and 3.5-4 clearly illustrate the tendency of the

canonical correlation procedure to fit all frequencies with

nearly equal percent error, whereas from Figs. 3.5-7 and 3.5-8

it is seen that in the canonical prediction procedure trequtncy

bands of highest energy are emphasized. Thus for a hydrograph

with a large spectral peak and complicated spectril shape,

i . e. , requ i ring a high order rat iona I func t ion f or i g,),d ')-

proximat ion, the canonical predict ion cr it erion can be exptct -d

to excel.

3.5.2 Multirate UnitHydoraphs

The reduced-order modeling of multirate unit hYdro-

graphs produces results very similar to those described in

Section 3.5.1 for unit hydrographs with the sam input tnd

output rates. The maj or di fferences encount ered or mu t i rat '
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Figure 3.5-1 6-Hour Unit Hydrographs for Bird Creek,
Original Hydrograph (Solid Line) and
Fourth-Order State-Space Approximiat ion
Using the Canonical Correlation Procedure
(Dashed Line)
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Figure 3.5-2 6-Hour Unit Hydrographs for Bird Creek,
Original fydrograph (Solid Line) and
Eight-Order State-Space Approximat ion
[Is ing t he Canon icalI CorrelIa t ion Procedu re
(Dashed Line)
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Figure 3.5-3 Squared Magnitude Transfer Function of 6-Hour
Unit Hydrographs for Bird Creek, Original Hydro-
graph (Solid Line) and Four-Order State-Space
Approximation Using the Canonical Correlation
Procedure (Dashed Line)

8 STATES

0-0 -

WE -

C< 101~ --

102

0.0 0.5 to lb5 2.0

FHEGUENCY (cy, Iddyl

Figure 3.5-4 Squared Magnitude Transfer Function of' 0-tour
Unit Hydrographs for Bird Creek, Original I ' dro-
graph (Solid Line) and Eight-Order State-SPaco
Approximnat ion Using the Canonical Correlation
Procedure (Dashed Line)
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Figure 3.5-5 6-Hour Unit Hydrographs for Bird Creek,
Original Hydrograph (Solid Line) and
Fourth-Order State-Space Approximation
Using the Canonical Prediction Procedure
(Dashed Line)
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Figure 3.5-6 6-Hour Unit Hydrographs for Bird Creek,
Original Hydrograph (Solid Line) and
Eight-Order State-Space Approximation
Using the Canonical Prediction Procedure
(Dashed Line)
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Figure 3.5-7 Squared Magnitude Transfer Function of 6-Hiour
Unit Hydrographs for Bird Creek, Original Ilydro-
graph (Solid Line) and Fourth-Order State-Space
Approximation Using the Canonical Prediction
Procedure (Dashed Line)
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unit hydrographs is inherent in their multirate nature and

involves the production of components at the output which are

of substantially higher frequency than the input.

For example, consider the unit hydrograph with input

every 6 hrs and output every 3 hrs shown in Fig. 3.5-9 with

transfer function shown in Fig. 3.5-10. As expressed in Eq.

3.4-18, an excitation by a sampled sine wave at frequency f

cyc/day for 0 < f < 2 produces at the output the sum of two

sine waves

A1 sin(2nf + 01) + A 2 sin(2n(4-f) + 02

where A2 and A2 come from Fig. 3.5-10 at frequencies f1 and

4-fl eye/day respectively. If a 0.5 cyc/day diurnal component

is exciting the unit hydrograph, then the output is the sum ol

a 0.5 cyc/day and a 3.5 cyc/day with amplitude about one-eighth

the 0.5 cyc/day component. The input and output are illustrated

in Figs. 3.5-11 and 3.5-12 where the boxes denote the sampling

times.

The problem of spurious high frequency components in

the output of some multirate unit hydrographs occurs in the

present NOAA/NWS forecast system because the catchment model

operates at the same rate as the precipitation measurement.

This difficulty is completely avoided by implementing the con-

tinuous catchment model as discussed in Section 2 so that a

channel inflow is produced at the same rate as the channel

discharge.
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4. PARAMETER IDENTIFICATION FOR CATCHMENT MODELING

The NWS has developed a general conceptual hydrologic

model for catchment modeling including a soil moisture ac-

counting program. In Section 2, a continuous time dynamical

model of catchment dynamics was derived and discussed in de-

tail. To "tune" this model for specific catchment systems, it

is necessary to identify parameters within the structure of

the NWS model (Ref. 8). In the calibration of the NWS catch-

ment model, problems of convergence have been encountered.

These difficulties are typical of problems arising in similar

applications of parameter estimation in many dynamic systems.

The objective of this task is to perform an initial analysis

of the potential application of maximum likelihood methods to

the catchment model parameter estimation problem.

While other methods are useful in particular situa-

tions such as recursive online processing or preliminary anal-

ysis, the most powerful and robust technique developed to date

is the maximum likelihood (ML) method. Important advantages

of the maximum likelihood method not generally availabl, in

other procedures include:

* Parameter estimates are unbiased and of
minimum variance for large samples

* Tests of hypotheses about model struc-
ture or order based upon ML estimates
are optimum for large samples

" Distributions of the est imat ion error
and test statistics are readily computed
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0 Computation of the ML estimates is an
optimization problem with many different
ways available to take advantage of sparse
model structures.

The major computational problem is to obtain maximum

likelihood estimate- of the model parameters using numerical

optimization. The early development of system identification

techniques was plagued by ill-conditioned optimization prob-

lems caused by "nonidentifiable" parameters. Nodels often

include parameters which have little or no effect upon the

measurements. Although the statistical problem of estimating

such parameters is still well defined and meaningful, severe

numerical problems can arise in the optimization procedure.

As discussed below, these problems can be largely avoided by

inspecting the Fisher information matrix which defines the

parameters or combinations of parameters that are not identi-

fiable. The optimization is then constrained to those param-

eters which are identifiable.

In Section 4.1.1, a general description of the dy-

namical model of a river basin for the purpose of parameter

identification is given. A more detailed description is given

in Section 2 and previous progress reports (Refs. 2, 4, 5).

Section 4.1.2 is devoted to evaluation of the likelihood func-

tion using a Kalman filter and to related computations used in

optimization. A detailed description of the Kalman filter for

the hydrologic model was given in Chapter 2 of this report.

The parameter sensitivities of the state estimate and its error

covariance which are required in the optimization are detailed

in Section 4.1.3. In Section 4.2, optimization considerations

are discussed including a new identifiability theory which

avoids ill-conditioning due to nonidentifiability of parameters.

Details of a quadratic optimization algorithm and statistical

convergence criterion are described. Finally reparameteriza-

tions which will accelerate convergence are considered. In
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Section 4.3, results from determining parameter identifiability

and demonstrating the algorithms on simulated precipitation and

channel discharge data are presented.

4.1 LIKELIHOOD FUNCTION FOR DYN.AMICAL MODELS

To apply the maximum likelihood method to estimate

the parameters of a dynamical hydrological model from observa-

tion data requires a procedure for evaluation of the likelihood

function for such models. First., the form of the parametric

dynamical model is described, and then computational procedures

for evaluation of the likelihood function and related quanti-

ties needed in the optimization procedure are discussed.

4.1.1 Dynamical Parametric Models

The dynamical model of a basin described in Chapter 2

can be regarded as parametric in the parameters 0 as listed in

Table 2.2-1. This model is described by the dynamic relation-

ships

X(t) = f(x, u, w, 0, t) (4.1-1)

with initial condition x(t ) = x at t ime t where x( t ) is t lt-- O -0 O0

state vector, u(t) is a known deterministic input, w(t) is

white noise with covariance matrix Q(t) and t is time. The

initial condition x can be considered as a fixed but unknown

constant and included in the vector of parameters to be esti-

mated. The measurement model is of the form

z(t) h(x, u, v, t) (4.1-2)
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where v(t) is white measurement noise with covariance matrix

R(t). The noise covariance matrices Q(t,O) and R(t,8) can

also be considered as functions of unknown parameters to be

estimated.

These equations and the correlation structure of the

system noise terms imply a correiation structure among the ob-
T T T

servations z (zl .. ' z N To determine maximum likelihood

estimates of the parameters 6 given the observations z requires

a procedure for evaluating and maximizing the likelihood function.

4.1.2 Likelihood Function Calculations

The optimization method outlined in section 4.2 re-

quires, for a specified value of the parameters 6, calculation

of the

0 Log likelihood function In p(z,6)

i • Gradients aln p(z,O)/a0 i , i=]......k

* Fisher information matrix with eleivnt,,

-Et3 2  in p(z,6 )/aO . 0 a . i , i ,.j,=I ..... k

where p(z,E) is the probability density of the ltesur I -m ts ..

These computations are performed by the imwdular inid

general PARAIDETM (parameter identification) computer software

for maximum likelihood parameter identification. The calcula-

tions are structured as follows and described in more delil

in following sections:

0 Linearize the differential and measure-
ment equations (4.1-1) and 4.1-2) u-ing

PARAIDE is a trademark of The Analytic Sciences Corporation.
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symbolic differentiation to obtain the
state space matrices F, G, H specifying
the linear state space equations about
each filtered state estimate R i/i.

0 Implement a Kalman filter using the line-
arized state equation model to propagate
the state estimate and its error covari-

ance matrix Pi/i'

0 Calculate the innovations sequence from
the Kalman filter and the resulting error
covariance matrices. Evaluate the log
likelihood function.

0 Calculate the sensitivity functions
aF/a(, 8G/aO, 3H/ae, aQ/aO, aR/aO by
further symbolic differentiation of the
differential and measurement equations

(4.1-1) and (4.1-2).

0 Implement a Kalman-type algorithm to

propagate ax i/i/ae and 3P , i 'ao for

each 0. and to evaluate the j gradi-J
ent component of the log likelihood

function 81n p(z,O)/aO..J

* Evaluate the Fisher information matrix
using the gradient calculations.

A method is described for evaluating the joint like-

T T T
lihood function p(z.0) of the observations z (z 1 z N

for the model described in Eqs. 4.1-1 and 4.1-2 with a parti-

cular assumed value 0 for the parameters. The approach is to

take advantage of the independence properties of the innova-

tions of a Kalman filter.

Consider a value of 0 for which evaluation of the

likelihood function is desired. If the observations z were

produced by the model Eqs. 4.1-1 and 4.1-2 with true param-

eters equal to , then the Kalman filter based upon this

model would produce an innovations sequence v1 .. VN with
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v z. " Hi /^ -(4.1-3)

such that v' is independent of vj for i X j with the covariance

of v.

TB H P HT  R R (4.1-4)B1 = ii/i-Ii +1R

For a linear model the innovations have a Gaussian distribu-

tion, and for mild nonlinearities the model is approximately

Gaussian. In any case, the quadratic term in Eq. 4.1-5 gives

a weighted squared measure of the innovations v.. Assuming a

Gaussian distribution for the innovations leads to the expres-

sion for the logarithm of the probability density

N T -
In p(z,e o ) = - (In B. + v. B. v.) + constanti=l 1 -1 i -i

(4.1-5)

where the constant depends only on N and not z or 6 0 This

expression was arrived at by taking e to be the true value 6-- --()

of the process generating the actual observations z. However.

this is not significant since a formula for evaluating the

probability density p(z, 0) as a function of both z and 00

must yield the correct result for any possible z whether or

not it in fact came from a model with 0 the true parameter-O

value.

To maximize the likelihood function, gradients of the

log likelihood function are needed. This is obtained by dif-

ferentiating the log likelihood function with respect to each

component 0. of 0
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a in p(z,O) N -1 3B. T aB
ao.__ __ - 2_ t (_a - - .B. 1 B-1j tr(1i =1 B J

+ \f. B.-1 _(4.1-6)

The sensitivities aBi/a8 i and v i/30 are expressed for a given

0. in terms of the sensitivities aP i/i /00 and a.iii/0 j of

the state estimation error covariance and state estimate by

differentiating Eq. 4.1-3 and 4.1-4. This gives

-v _ R . axii

1 (4.1-7)30. 3o. !-i/i-1 Hi 36. (. 7
o o 3

aB. aH. a P aT a R
T i/1-1 HT +H.

B P _ H. + H. H + H P36 a. Pi/i-I1 1 30. 1 i/i-I 30. 36.
JJ J J .

(4.1-8)

The sensitivities of the state estimate and its covariance

matrix needed in the above equations are obtained in Section

4.1.3 by straightforward but lengthy differentiation of all the

Kalman filter equations with respect to 0.. This results in a

set of equations similar in form to the Kalman filtcr (and in

order of computation) except that i nstead of propagating th,

state estimate xi/i and its covariance matrix Pi/i, the sensi-

tivities 3R i/i/3 and aP i/i0/a are propagated.

Finally, an approximation to the Fisher information

matrix is obtained from the gradient calculations. The (i .. i)

element of the Fisher information is approximated as (Ref. 20)
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a a in p(z,O) a In p(z,O)
F aieE aa ae- 0

a-vT- aB k 1 1 ask B-1 ak
BOk1 a36 2 kae~ k a

+ 1 tr( 1 -k tr( 1 -k (4.1-9)

4 krB 3a. t k)

4.1.3 Propagation of State and Covariance Sensitivities

Propagation of sensitivities of the state estimate
ak /i6 and its error covariance matrix 3P i/i/36i with re-

spect to a parameter 0. are detailed in this section. ThisJ
involves straightforward differentiation of the Kalman filter

equations detailed in Section 2. First the state sensitivites

are discussed and then the covariance sensitivities given.

To begin with, we note that the nonlinear differential

equations (2.4.1) are parameter dependent so that we write

F (x ,t) as dependent upon the parameters 0. To avoid pos--c-C 9- -
°

sible confusion in differentiation, all derivatives of F with-C

respect to x are considered with x as independent of 0 -'.the-C -C-
chain rule is used to take into account subsequent dependence

of k on 6.-C

The discrete and continuous state estimates Rand xc

are propagated according to (2.5-3) and (2.4-5) with the term

' deleted. Straightforward differentiation with respect to

6., noting that A and B are not functions of 6., gives
J J

a t+A) aR! ( t I a h
-'c to _ + h +D(4 .1-10)

ao. o.. + D- ao.
J J J
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ak dI(vk)' IJ ak d I(vk) B 8k I J(vk)- 141-1
ao ae ae.(.-1

whe re

h = F (k (t0 ,O)), 6', to) (4.1-12)

- C= (4.1-13)

-c (k (t ), O to

and D is the matrix function (exp(F cA) - )F . Partial deriv-

atives ah/3aO are computed by the chain rule

3 -/)0 3Fc -kc + -Fc (4.1-14)
j e. ae.j
-c 01 , , t)

Denoting F = F c9 the computation of 4)(t,t. 1  and

D(t ,t~i can be done along with their partial derivatives as

~(At = ~+ (FAt )n( -5

n!
n~n

D(At) =I + 1; (FAt)' At ( 4.1-16)

n 1l (n i- lU-)

3-0(At) 1 a(FAt)n(.1-7
ae. n1n! ae. (.-7

with @(FAt) n /36 computed recursively as

D(FAt)n .- a aF nF)- I Ft (FAt )n- 11.-9
ao. a . MF)t + FI /.-
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To accelerate convergence of these series, 4) and D can be com1-

puted using these series for a time increment At 2 -n and then

4(At) and D(At) computed recursively by

-t(At 2 -k) = [4)(At 2k)]2 (4.1-20)

D(At 2-k) = F- I ( - q)(At 2k)) (I + 4P(At 2))k-

= D(At 2k ) (I + 4)(At 2))k- (4.1-21)

and the partial derivatives 384(At 2k)/30 and 83D(At 2- )/3(0

computed by differentiating these two recursive relations.

Sensitivities of the state estimation error covari-

ance matrix can be conveniently propagated along with the

state sensitivities. The partials of the state covariance

matrices 3P /8~ and 12of aP/ are obtained by differ-
entiating items 9ad1ofthe Filtering Algorithm in Section

2.5 as

ap 
Ta

C PO +4 P (aci 4 T + t p T-- +a (4.1-22)
80 ao. 1 6. C \ Cae. / C ( a PE Q

apcd 3 C ~ a cd (4.1 -3)
80 60. cd + c 86.

for time transition (v(k+1)) - to (v(k+1)) 0 and

apd +8(A P T + ad)AT+P )T + a B T)
80. . d8 JP *ae.- +Ad(0. ,Id

+ a(BP A T )T +8 B T (4.1-,!4
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apcd (3cd) T / A \ I3 c~ T /3B (4.1-25)A P - +-- B + Pc (4.1-2S
36 D cd 8O. \aO ) 86O.

for time transition (v(k+l))" to (v(k+l))°.

The remaining relations concern the Kalman update.

The Kalman gain sensitivity is

3 = T + PHT 3. PHT + H , + HP T OR
ae.P allT~ (HPI + R) +~l H ~ P

(HPH T- R) (4.1-26)

Sensitivities of the updated state estimate and its error co-

variance matrix are given by differentiating items 17 and 18

of the Filtering Algorithm in Section 2.5:

a_ a R av
a - -+  - v + K ao. (4.1-27)

i J J i

aP aP - K HP - K 31] P - Ka (4.1-28)
36. ao. E. 30. 3 .
i i i i i

4.2 OPTIMIZATION

One of the greatest challenges in parameter identi-

fication has been the solution of numerically iii-conditioned

or even ill-posed maximization problems. This is a problem

receiving considerable attention in least-squares methods and

much less attention in the maximum likelihood case. The de-

sign of general purpose algorithms which work reliably and

efficiently is necessary for the general application of maxi-

mum likelihood theory. This is particularly relevant tor the
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identification of catchment parameters where the differential

equations are time varying and involve saturation effects with

structural changes in the equations at overflow of various

reservoirs. Because of these complications, a general and

reliable procedure is required.

Described below is an approach based upon a new small

sample theory of identifiability which is usable even when

some functions of the parameters are nonidentifiable, i.e.,

when perturbations of some combinations of the parameters 0

produce no change in the likelihood function. In this approach,

the nonidentifiable parameters are first determined by inspect-

ing the Fisher information matrix. Then a Levenburg-Marquardt

optimization procedure is used in the subspace of parameter

space that is orthogonal to the nonidentifiable parameters to

compute an identifiable set of parameters.

4.2.1 Identifiability Theory

The introduction of parametric statistical inference

concepts and methods by R.A. Fisher (Ref. 21) was one of his

major contributions to statistics. Unfortunately, a major

difficulty in identifiability problems has been an overemphasis

by many researchers on inference about a parameter vector 0

rather than inferenice jbott the (-lass F = jp(z.0 ) of pro),,b i I-

ity densities indexed by the parameter 0. M(st det initions of

identifiability concern properties of the resulting parameter

estimates rather than intrinsic properties of the ('lass F in-

dexed by the parameter 0. Indeed, some definitions require a

hypothetical infinite sample and define identifiability in terms

of asymptotic convergence of the estimates to the true parameter

va l ues.

This o\,erempha sis on the parameter values rather than

the class of probabilit y densit ies indexed by the paramet ers
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has developed despite the early and fundamental contribution

of Ref. 22. This paper explicitly defines identifiability of

the class F if unique parameter values produce unique probabili-

ty densities. This formulation of the problem of specifying

probability models for statistical inference includes the iden-

tifiability problem - i.e., whether or not the specified models

are "observationally" unique. Later developments in the litera-

ture seem to have largely overlooked this basic concept except

for a few econometric papers (see Ref. 23 and cited references).

In the approach selected for this study, the properties

of the parameterized class {p(z,0), 6 & 0} are the central

issue. The above definition of identifiability (Ref. 22) as

formulated for the parametric case by Ref. 23 is adopted:

Two parameter points 01 and 02 are said to be observa-

tionally equivalent if p(z,0 1 ) = p(z,O2 ) with probabil-

ity 1. A parameter point 01 is said to be globally
identifiable if there is no other 0 c 0 which is ob-

servationally equivalent. A parameter point 01 is

said to be locally identifiable if there exists an

open neighborhood of D1 containing no other 0 in 0

which is observationally equivalent.

This approach exploits the equivalence between loc,jl

identifiability and full rank of the Fisher information matrix

as in Ref. 23. To extend this connection much more generally,

a powerful new result on existence of identifiable reparaleter-

izations is used (Ref. 24).

Reparameterization Theorem - If the Fisher information

niatrix F of a parameterizat ion 0 of the I ikelihood function

has constant rank h in a neighborhood of a point 0() of paramc-

ter space, then there exists a reparameterizat ion y(0) such

/4-13
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that (tsl ... th ) is locally identifiable and the likelihood

function is not a function of (1h+l .... ' h ) " Furthermore the

gradient vectors

(a3o./36 1 $ ... 3 i/aOk)T for j = h+l, .. ,k

span the null space of FO.

By using reparameterizations resulting in a nonsingu-

lar Fisher information matrix, a complete characterization of

local identifiability by the Fisher information is possible in

the singular case. Previous results have carefully avoided

reparameterizations where existence is not trivially guaran-

teed by constraints, etc. Such a reparameterization seems to

be necessary to obtain these general results.

Another aspect of the identifiability approach is to

exploit the special structure involving the Fisher information

matrix to devise efficient and numerically well conditioned

methods for maximizing the likelihood function. Using the

general results on reparameterizations, it is possible to gen-

eralize and to make precise a procedure for using generalized

inverses in the method of scoring when the Fisher information

matrix is singular (Ref. 25). Specifically how the reparame-

terization result is useful in studying the special structure

of the maximum likelihood optimization problem is discussed in

detail in the following section.

4.2.2 Maximization of likelihood Functions

Lack of uniqueness, i.e, nonidentifiability, manifests

itself as ill-conditioning in computation of least squares or)

maximum likelihood estimates. Even when the parameters atre

identifiable, ill-conditioning often arises because of the.
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considerable difference in sensitivity of the likelihood or

squared error functions to changes in different parameters.

Some past work used the special structure of least squares

problems to devise efficient optimization methods which recog-

nize any nonuniqueness or illconditioning and solve for the

parameters within the equivalence due to the nonuniqueness

(Refs. 26, 27). Very little progress along these lines has

been made in the maximum likelihood problem although a very

general method has been proposed (Ref. 25). The maximum like-

lihood method provides practical parameter estimation and test

of hypothesis procedures for many complex random processes,

and also provides the needed approximate distribution theory

which is not generally available with alternative procedures.

Most maximum likelihood methods require that the class of mod-

els be reparameterized uniquely so all parameters are identifi-

able. There are no conditions given for when such a reparame-

terization is possible. To answer questions of existentcc and

to actually reparameterize involves solving a system of nonlintear

partial differential equations.

The method proposed in Ref. 25 presumes that there

exists a reparameterization for which the Fisher information

matrix is nonsingular and evidently equates such nonsingularitv

to identifiability although any rigorous discussion or c\,crl

definition of identifiability in the nonlinear case is lacking.

It is argued that the method of scoring (using the Fisher infor-

mation matrix in place of the Hessian in a Newton type algorithm)

can be implemented entirely in the original nonidentifiable

parameterization using the pseudoinverse of the Fisher infor-

mation matrix to restrict the maximization to a locally identi-

fiable subspace of parameter space. This would avoid any necd

to reparameterize in terms of an identifiable set of p),araimt.rs.

Presently the only alternative method to preclude ident i fiibi lit\'

difficulties is to actually carry out such a reparameterization
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which is often exceedingly difficult if at all feasible computa-

tionally. Because of the complexity of the catchment model

discussed above, determining such a reparameterization almost

certainly would not be feasible.

One of the objectives of the present approach is to

use the special structure of the maxixium likelihood estimation

problem to devise efficient, numerically accurate and stable

maximization methods. In particular the method of Ref. 25 can

be shown to work very generally utilizing the new result de-

scribed in Section 4.2.1 which guarantees the local existence

of an identifiable reparameterization whenever the Fisher in-

formation matrix has constant rank locally. This also general-

izes the equivalence of identifiability and full rank of the

Fisher information matrix (Ref. 23) to the reduced r -I: case

(the null space is the local equivalence class).

The method of scoring is not only attractive in rci-

moving identifiability problems, but it has several other it-

tractive computational features. In a number of problems tht,

Fisher information can be computed from the gradient computa-

tions with little additional work. Thus Hessian information

is obtained from the gradients without additional computation.

It has been found in practice that this Hessian approximat ion

gives excellent approximat ion to the eigenv -,tors which domi -

nate the numerical behavior of approximate Hessian methods.

This suggests further special structure of the problem since

Hessian approximations in illconditioned cases usually result

in poor algorithm performance unless there is some special

structure.

4.2.3 _Quadratic Algorithm for lde; ifiable Paramet(trs

The above theory provides a basis for an ett icient

and wel I behaved algorithm even though there may te nonident i-

/4-16
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fiable parameters present. The first step is to perform an

eigenvalue-eigenvector decomposition of the Fisher information

matrix F in the form

F = U A UT (4.2-1)

where the columns of U are orthogonal vectors so U TU = I and

where A is diagonal with elements arranged in descending order

A I> ... > An > 0. The algorithm should automatically check

that F is positive definite to detect numerical difficulties

that might have occured in computing F. To determine identi-

fiability, a threshold c, say 1l2 for double precision with

15 decimal places, is set and any eigenvalues A. <A 1 are

modified as

hi if A > F-A
1 14A. A. i A c ( 4.2-2 )

I mod
imod 0  if A. < F

The eigenvectors corresponding to the modified eigenx'alues set

to zero specify the locally nonidentifiable linear combinations

uTO of the parameters. The optimization is constrained to the

subspace of linear combinations of parameters that are ortho-

gonal to these nonidentifiable combinations, i.e., constrained

to the subspace of parameter space spanned by the eigenvct ors

u 1 .... u k corresponding to the unmodified eigen\'alues.

A quadratic algorithm is one which uses local quadrat-

ic information about the log likelihood function, i.e., the

gradient (first partial derivatives) and the Hessian (second

partial derivatives). The identifiability theory guarantees

that the null space of the Hessian will exactly coincide with

that of the Fisher information matrix so that Ierturhat ionls ot

linear combinations in the null space of the Fisher informat ion

matrix will have no effect upon the likelih ood function. S i ne,
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the log likelihood function is in general only locally quadratic,

some procedure is needed to constrain the step AG in parameter

space to a region in which this quadratic approximation is

a reasonable one. An excellent procedure is the so-called

Levenburg-Marquardt procedure (Ref. 28) which is discussed in

a statistical setting in Ref. 29 as an optimal step that maxi-

mizes the quadratic approximation subject to a fixed step length.

If, in addition, the optimization is constrained to be orthog-

onal to the nonidentifiable parameters, then the algorithm has

the form

A6 = -(Fmod + X1mod)f V in p (4.2-3)

where

V In p vector of gradients a In p(z,6)/a0.

F = UT
Fmod U Amod

:I mo d =U Q UT

'mo -QU1 if Ainmod > 0

0 is diagonal with 1.. -

0 if A mod = 0

A is a step length parameter

f is the pseudoinverse operation

The calculation is implemented using only vector products as

k u .(V In p)
A_ = - A +A -i (4.2-4)

i=l i

where V In p is the gradient vector a In p/a0.

Trial steps are made with an initial value of A trom

initialization of t;e program or from the last iteration. For
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the trial step 0 i+l =- i + 66, the log likelihood function is

evaluated and the quadratic prediction criterion

p - predicted log likelihood (4.2-5)actual log likelihood

is calculated where the predicted log likelihood In j is based

upon the quadratic approximation

In b(ei+i ) = In P(Oi) + AoT V In p + AOTF mod

(4.2-6)

The step length parameter A is adjusted by powers of 2 until

.25 < p < .75 (4.2-7)

or until A < Ak/ 8 in which case A is set equal to zero and a

modified Newton step results.

The above optimization procedure is implemented in

the PARAIDET M computer software. This procedure has been used

on a number of very complex nonlinear parameter identification

problems in the past with very good numerical behavior and

convergence.

4.2.4 Acceleration of Convergence by Reparameterization

The rate of convergence of the quadratic algorithm

depends upon the goodness of the quadratic approximation to

the log likelihood function. This quadratic approximation can

be improved by choice of an appropriate parameterization of

the likelihood function which stabilizes the Fisher information

matrix, that is, which results in a nearly constant matrix

with changes in the parameters (Ref. 30). Such a stabilizing

parameterization also improves the approximate distribution
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theory on the parameter estimates and results in very nearly

normal distributions of the estimates even for quite small

samples (Ref. 31). This is true in spite of the very nonline-

ar nature of the catchment model so that with an appropriate

reparameterization the problem is nearly quadratic.

Stabilizing reparameterizations are obtained from a

given parameterization 0 and its Fisher information matrix F0
by finding a reparameterization 0(0) of 0 with a gradient a6O

such that

F= -T F(Vl) (4.2-8)

is nearly constant independent of the point ! of parameter
space, where V is the matrix of partial derivatives with

(i,j) element a0i/ae., This is in general difficult to do,

but in many cases there are simple reparameterizat ions which

will yield considerable improvement. Two examples are the

variance parameter a and the correlation coefficient p which

are improved by the reparameterizations

o2 ) = ln a 2 (4.2-9)

(p)= 1 In l+ = arc tanh (p) (4.2-10)
l-p

In general for a single parameter e the stabilizing reparame-
terization is given by integrating Eq. 4.2-8 as

0(0) = / (F0 )
1 2 dO (4.2-11)

0

4.2.5 Statistical Convergence Criterion

A convergence criterion is used to decide when the

maximum of the likelihood function has been found with suf-
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ficient precision. The objective is to make the error 6 k-

between the computed value Ok at iteration k and the true maxi-

mum 0 small relative to the expected error in 0 due to sampling

variability. Thus the convergence measure

(E [cov(6)J (E) 2  
- ~- 0  F(E)(k) 6

(k-O) [c y O ] 1  (k-0) < ((Ok-() F( )(0k- )=

(4.2-12)

is used, where the inequality follows from the Cramrr-Rao lower

bound (Ref. 32). Since the function is usually nearly quadratic

close to the solution, we have

O - 6 = E k - 0k 1  - Fk V (ln p) (4.2-13)-k - k -k+l k -k

and using the notation Vk = V k(ln p) yields

6 1 VT  Ff Vk (4.2-14)
k k -

Also the error in computing the value of the function

In p(0) is

P-n p(0) -n p(k = _0- + (0-kT H(6-6k)

VkTOk+,-k ) + (0 k+l-k T k+lk

VT ( - + (0 - T H (0 - )
-k -k+l-Ok k+l- k -k+l k

= vTFt Vk + V FtHFtVk (4.2-15)

where H denotes the Hessian matrix. Thus on the average, the

maximum value gn p(O) is underestimated by

T (4.-l)
Elin O k)n = 2 vk F k 2.
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The quantity -22n p(6) is basic in tests of hypotheses. It

can be shown that the addition of each unnecessary parameter

to the model will decrease the value of the test statistic
2-2kn p(O) by a chi-square random variable X1 on one degree of

freedom (Ref. 16). Since Var(X2) = 2, the error in computing

-2 kn p(6) as -2 kn p(ok) is 46. Thus for 6 102, the error

in computing 2 kn p(6) is small compared with the expected

sampling variation.

4.3 RESULTS

The maximum likelihood parameter estimation methods

are demonstrated on precipitation and discharge measurements

simulated using a NWS supplied catchment model. The parameter

identifiability question is discussed, and then the local be-

havior of the algorithms and nature of the parameter estimates

described.

4.3.1 Parameter Identifiability

The identifiability of catchment model parameters is

illustrated in this section for two contrasting cases of ht,a\'v

and moderate rainfall. The rainfall and channel discharge

data was simulated for Bird Creek basin over a one-month period.

The hydrologic structures excited by these rainfall records

are compared in Table 4.3-1. The rainfall records are illus-

trated in Figs. 2.2-4 and 2.6-3 for the moderate and heavy

rainfall cases respectively. The various catchment model

state histories for the heavy rainfall case are illustrated in

Figs. 2.6-4 through 2.6-19.

4-22
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TABLE 4.3-1

COMPARISON OF MODERATE AND HEAVY RAINFALL CASES

MODERATE HEAVY

CASE

CATCHMENT RAINFALL RAINFALL
ELEMENT

Maximum upper-zone

tension water content

Surface runoff none 3 times

Maximum lower-zone
tension water content I time none

Upper-zone free-water very nonzero
content little half of time

The identifiability of parameters for the heavy rain-

fall case is shown in Table 4.3-2. The first two columns show

the catchment model parameters and their true values used in

the simulation of channel discharge data. The approximate

standard deviations and correlations of the parameter estima-

tion errors were calculated from the inverse Fisher information

matrix. Whon all fifteen parameters are simultaneously esti-

mated, only x° and x have standard deviations around 1 percent1 2

0
while the parameters x , d, d , d", p, and a are less than

about 10 percent, and the remaining parameters have errors ot

the order of the parameter values themselves. If however all

parameters but one were known or presumed known, then the stan-

dard deviation due to sampling variability in estimating only

that one parameter is reduced as shown in column 4. In some

cases the reduction is nearly two orders of magnitude and gen-

erally involves high correlations with other parame'tcrs when

estimating all fifteen parameters. These high correlations

indicate near deterministic dependence between the pa ratmters

involved and implies that corresponding changes in these param-

eters have almost no effect upon the predicted observations.

4-23
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TABLE 4.3-2

IDENTIFIABILITY OF CATCHMENT PARAMETERS
FOR HEAVY RAINFALL CASE

STANDARD DEVIATION HIGH
CORRELATIONS,

PARAMETER TRUE 15 PARAMETERS I PARAMETER 15 PARAMETERS
VALUE ESTIMATED ESTIMATED ESTIMATED

0

I  120 mm 1.08 0.984
0

2  15 mm .188 0.019
2

3  160 mm 9.8 1.20
0.87 (x,, xC)0

4  140 mm 57 0.88

0 14 mm 9.1 0.19 0.88 (x, I
x 5

d 1.486 E-2 1/hr 3.9 E-4 5.1 E-55.4501/h05 50x ° ,

di 5.452 E-4 /hr 5.8 E-5 5.0 E-6 -0.90 (X5d

5.612 E-3 1/hr 1.1 E-3 7.0 E-5 0.92 (x4, (y)

48 42 1.4
0.993 (y, uY)

O 2.1 1.2 0.022

Pf 0.02 0.009 0.0078

p 3.55 0.33 0.043

a1  0.17 0.015 0.0046

a2  0.001 0.00094 0.00049

s 0.0 0.88 0.30

In the case of estimating only one parameter with all others

known, the error is less than about 1 percent in all parameters

except pf, a1 , and a2. The more difficult to (let ermine param-

eters are associated with the percolation function (2.2-18) in

both cases of estimating one parameter alone or all fifteen

simu lt aneous ly.
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The identifiability of parameters for the moderate

rainfall case is shown in Table 4.3-3. It is qualitatively

similar to that of the heavy rainfall case except that the

estimation error standard deviations are larger, by orders of

magnitude in some instances, and the high correlations are

more numerous and some very high (greater than 0.99). When

all fifteen parameters are estimated, only x0 can be deter-

mined to about 1 percent, x0 to about 25 percent, and the rest

are not identifiable. Much of this difficulty is due to the

inability to differentiate between the effects of perturbations

in different parameters upon the discharge measurement. This

is apparent since individual estimation of a parameter with

the others known results in an error of less than several per-

cent except for the parameters pf and a 2 . Note as before that

the most dramatic reduction in estimation error between the

cases of estimating only one parameter and estimating all fif-

teen simultaneously occurs when very high correlations are

involved.

The conclusions apparent from the identifiability

results for the moderate and heavy rainfall cases above are

that:

" Sufficient rainfall to excite all basin
dynamics is required if parameters are
to be estiniated simultaneously

" Some of the parameters associated with
the percolation function are not identi-
fiable even if all other parameters were
known exactly.

The identifiability of parameters for a given basin will thus

depend very strongly upon the available records of storms ()r

high snowmelt. Just increasing the length of the data used

will not significantly improve the identifiabi lity. What is

needed is more data involving the excitation of the basic

dynamics in different ways.

4-25
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TABLE 4.3-3

IDENTIFIABILITY OF CATCHMENT PARAMETERS

FOR MODERATE RAINFALL CASE

STANDARD DEVIATION HIGH
CORRELATIONS,

PARAMETER TRUE 15 PARAMETERS I PARAMETER 15 PARAMETERS
VALUE ESTIMATED ESTIMATED ESTIMATED

x1 120 mm 1.4 1.0

0.86 (X0, x( ))
x 2  15 mm 3.5 0.56 4

0.84 (x",, d

x3  160 mmn 3600. 2.6 -0.87 (x 3 xS )
0

x 140 mm 3200. 2.1 3' 4

-0.89 (x3, dr)
x 14 mm 120. 0.72 3 V

5 0.83 (x',d)

d 1.486 E-2 1/hr 14.8 E-2 0.077 E-2
u -0.85 (x0, )

d' 5.452 E-4 1/hr 7.6 E-4 0.06 E-4
2o 0.84 (x3, aI

d 5.612 E-3 1/hr 5.7 E-3 0.21 E-3
9 -0 .86 (u , a I

48 2200. 3.1 1
0.95 (y, a)

2.1 56. 0.042
-0.998 (du, p)

Pf 0.02 0.42 0.063

0.88 (di, p)

p 3.55 50. 0.039

a 0.17 7.9 0.007 -0.998 (p,

0.9999 (ai , I,

a2  0.001 0.0025 0.0009 0

s 0.0 8.7 0.22

4.3.2 Demonstration of Algpr it hm

The local behavior of the parameter id.nt i ficit ion

algorithm near the maximum of the I ikel ihood funct ion is dc.-

scribed. The global behavior from various initial parameter
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estimates will require more extensive investigation but is

expected to reproduce the generally robust and efficient be-

havior of quadratic hill climbing methods (Ref. 33).

The case considered is the heavy rainfall case dis-

cussed in Section 4.3.1 and the precipitation record is shown

in Fig. 2.6-3. To reduce the computer time required, only the
00

first 10 days were used and the three parameters x1,, x), and

d u were simultaneously estimated. The computer CPU time on an

IBM 370/3031 using a PL/l optimizing compiler was about 3 min

per iteration on the parameter \alues and was approximately

the number of parameters estimated (3 in this case) times the

CPU time for a Kalman filter run. There is great potential

for considerably reducing the required CPU time by exploiting

the special problem structure especially in the initial stages

where the parameter estimates are far away from the maximum

likelihood estimates. When the maximum is approached, the log

likelihood is approximately quadratic and convergence acceler-

ates very rapidly as discussed below. Thus few iterations are

needed near the solution.

Table 4.3-4 gives the result of four iterations of

the algorithm starting from the true parameter values. These

starting values are about 1%, 15%, and 10% respect ively frol

the maximum likelihood for x, 0 x o , and du The standard de\,i-

ations show little change for x(' but moderate change for X()

and d This suggests that the errors in estimating xo and (
u 2 u

have a probability distribution slightly different from normal.

A reparameterization may hel; this problem.

The changes in the likelihood funct ion value ar, due

almost entirely to changes in the quadratic ter m which is t h.

sum of normaliz ,d innovations. I f the pa raIt-,r (,.I i mait s

were noraml ly distributed, then twice the d i fference o the

log Ii ke Ii hood func t ions eva I ua t ed respect i \'e I y at t he t rue
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values and maximum likelihood estimated values of the parameters

would be a chi-square random variable on 3 degrees of freedom

(Ref. 32). This difference is 12.45 which is statistically

significant at the 0.01 level, i.e., a departure this large

would occur less than 1 percent of the time under the normal-

ity assumption. This indicates significant non-normality and/

or a nonzero mean due to nonlinearities in the catchment and
Trainfall models. Also, the quantity (0-0)TF(O-6) would be a

chi-square random variable on 3 degrees of freedom if the param-

eter estimates were distributed normally with zero mean. This

quantity is 18.17 and 9.68 respectively for the Fisher infornia-

tion matrix evaluated at the true parameter 0 and at the maximum

likelihood estimates 0. This further indicates some departure

from the theoretical distribution of the estimates. These

quantities would be expected to be smaller than about 7.8 ninety-

five percent of the time. Such a departure is easily caused

by a standard deviation being wrong by a factor of 2. The

above discussion indicates that the computed sampling distribu-

tion as indicated by the Fisher information and standard devia-

tions are accurate within a factor of 2.

Further nonlinear effects are apparent in the discharge

and precipitation innovations. The precipitation innovations

in Fig. 4.3-1 show large departures around 4 days. These large

departures are due to the nonlinear, nongaussian precipitation

model whose probability density has heavy tails so that devia-

tions of 5 standard deviations are not too unlikely. This

accounts for the two large peaks in Fig. 4.3-4 which displays

the innovations normalized by their inverse covariance matrix.

Due to nonlinearities in the precipitation and catchment models,

a deterministic filtering error appears in the discharge innova-

tions as shown in Fig. 4.3-2 at the true and estimated parameter

values. This deterministic function is somewhat obscured by

the innovations noise as shown in Fig. 4.3-3, however in other
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Figure 4.3-1 Precipitation Innovations
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Figure 4.3-2 Deterministic Component of Channel Discharge
Innovations for True (Solid Line) and Est i-
mnated (Mashed Line) Parameter Values
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cases it can be expected that, relative to the noise, very

large deterministic components can occur in the discharge in-

novations due to nonlinearities. Except for the peaks due to

these nonlinearities, the normalized innovations look quite

reasonable.

The convergence behavior of the algorithm is indi-

cated by the convergence criterion and confirmed by the

gradients and gradient norm (root mean square of gradients).

The convergence criterion exhibits a characteristic linear

convergence where the convergence criterion 6 is reduced by

approximately the same factor 10-2 on each iteration. Con-

vergence is achieved for practical purposes on the second

iteration (6 < 10-2), but the algorithm was continued to

demonstrate the character of the convergence and precision

of the computations.

The demonstration of the maximum likelihood algorithm

shows the potential for its use in NWS river forecast system.

The algorithm behaved efficiently and robustly in the presence

of nonlinear dynamics and nongaussian noise. Reasonable \'alucs

for the parameter estimates were obtained which were close to

the error predicted by the approximate sampling distribution

theory. More extensive testing of the algorithm is required

to determine how general these conclusions are.
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5. SUMMARY AND CONCLUSIONS

Applications of modern estimation and filtering theory

to the requirements of the National Weather Service (NWS) were

investigated to assess their potential for improving river

flow forecasting and catchment model calibration.

The work was organized into three principal tasks:

* Issues in filter design

* State-space model development for unit
hydrographs

0 Parameter identification for catchment
modeling.

5.1 ISSUES IN FILTER DESIGN

The applications of Kalman filtering techniques to

hydrologic forecasting required the development of catchment

state-space models. These were obtained by

* Developing continuous-time nonlinear
state-space equations for the Sacramento
Soil Moisture model

* Modifying the distribution of the perco-
lation to the lower zone to avoid slight
inconsistencies in the Sacramento model

Modeling channel routing with reduced-
order state-space models for unit hydro-
graphs

5-1
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0 Using state augmentation techniques to
combine the soil moisture and channel
routing systems to generate a complete
catchment model.

An extended Kalman filter for the estimation of the

state of the catchment system and the prediction of the dis-

charge to the channel was designed and its performance tested

with simulated data. Excellent agreement between true and

forecasted flows was obtained even under surface runoff condi-

tions. The results indicate that the extended Kalman filter-

ing technique constitutes a very well behaved procedure for

the practical forecasting of the discharge from a basin.

5.2 STATE-SPACE MODEL DEVELOPMENT FOR UNIT HYDROGRAPHS

The canonical variate method of deriving reduced-

order state-space models of unit hydrographs gives

* Optimal reduced-order models in terms of
weighted squared prediction error

0 An automatic procedure suitable for com-
puter implementation

* A computationally efficient and numerical-
ly stable algorithm.

The modeling of NOAA/NWS supplied unit hydrographs indi('at.

that

0 The sum square error criterion is superior
to the correlation criterion in producing
good low order approximations to the
unit hydrograph

* Considerable reduction in state order
was typical - from order ten or twenty
to order three or five

5-2
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0 Multirate unit hydrographs were no more
difficult to approximate than those with
the same input-output rate.

This reduced order state space modeling effort was highly suc-

cessful in achieving the objectives of the study. One inherent

difficulty in multirate unit hydrographs was discovered - cer-

tain particular unit hydrographs introduce spurious high fre-

quencies in the output as a result of a low frequency sampled

sine wave input. The need for multirate unit hydrographs is

completely avoided by using the continuous catchment model de-

rived in this report and integrating to obtain a discrete time

model operating at the same rate as the channel routing model.

5.3 PARAMETER IDENTIFICATION FOR CATCHMENT MODELING

The application of maximum likelihood methods to the

catchment model parameter identification problem provides an

initial evaluation of its potential use by NOAA/NWS. The maxi-

mum likelihood methods described in this study provide

* A determination of parameter identifi-
ability

9 A robust optimization algorithm which is
immune to parameter nonidentifiability

* Estimates of the identifiable parameters
and their estimation error covariances

0 An automatic procedure suitable for com-
puter implementation.

These methods were used on simulated precipitation and channel

discharge data generated using a NOAA/NWS supplied catchment

model for the Bird Creek basin. Identification of the catch-

ment model parameters indicates that

5-3
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0 Parameter identifiability is determined
by the extent to which the data excites
the relevant hydrologic structures

0 The optimization algorithm converges
very rapidly near the solution.

The maximum likelihood method has been demonstrated as a power-

ful, automatic procedure with potential for wide spread use in

the fitting of NOAA/NWS catchment models.

5.4 RECOMMENDATIONS

There are several important areas for future investi-

gation suggested by this study in the identification of catch-

ment model parameters

* Initialization and improved computational
efficiency in recursive refinement of
parameter estimates

* Tests of hypotheses between alternative
hydrological. model structures

* Use of robust methods on data for han-
dling outliers

* Application of both the Kalman filtering
and parameter identification to a number
of data sets for a variety of basins.

Such future study would demonstrate the generality with which

these methods apply to the NOAA/NWS operational hydrologic

forecasting.
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APPENDIX A

The constraint on the ratio of free to tension water

for the upper zone is analyzed in this appendix. It is shown

below that this constraint is superfluous for all basins examined.

When the constraint is removed, the state-equations

for the upper zone can be derived as follows (Ref. 2). Con-

sider first the tension-water element. Two quantities can

affect the rate of increase of the contents of the tension-

water element: the instantaneous moisture input and the evapo-

transpiration demand. The evapotranspiration rate from the

upper-zone tension-water element is u 2 (x0/xl). The moisture

input rate, up to the point when tension-water requirements

are met, is u At the time when x 1  x , two possibilities

arise:

0 The moisture input rate is larger than
or equal to the evapotranspiration demand

* The moisture input rate is smaller than
the evapotranspiration demand.

In the first case, part of the input moisture replaces th.

amount of water which is being lost through the evapotrans-

piration process. The tension-water content remains at its

maximum value and the free-water element receives the excess

moisture input (see discussion below). In the second ase,

the net rate of increase of the tension-water content is ne.ga-

tive and xI starts to diminish. Summarizing,
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u u2 -lh (x1 - x0) + hf(x1 - x1) hf(u2  Ul)j

1l (A-i1)

where he and hf are given by Eqs. 2.2-23 and 2.2-24.

The moisture input rate available for the upper zone

free water element is (u- u2 ) h (xI - x0 ) he(U 2 - u1 ). At

any given time the upper-zone free-water element loses water

through interflow at a rate of d uX2 and supplies the lower

zone through percolation at a rate p given by Eq. 2.2-13. If

the net inflow rate to the upper-zone free-water element is

positive for a prolonged period of time, x 2 will attain its

maximum value and surface runoff will start to occur. The

rate at which surfP.k runoff occurs is the excess of the mois-
0

ture input, (uI - u2 ) hf(x x1 ) he(u 2 - Ul), over the sum of

interflow and percolation rates, duX 2 + p. When this quantity

is negative, the upper-zone free-water content starts to diminish.

Thus,

0

x2 = [(u1 - u 2 ) hf(x I - x I ) he(u 2 - u I) - dux 2 - P1

" Ihe(X 2 - x0) + hf(x 2 - x )

x hfdx 0 + p (u1  u2 ) hf(x 1 - x °) h(u Hf1 heU 2 1U2 f I I

(A-2)

Recall the constraint on the ratio of free to tension

water: the normalized free-water content should not exceed

the normalized tension-water content, i.e.,

0 X < x X0 (A-3)x2/x2 X/XA-
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If at some time, t,

x2(t)/x = x 0(t)/xl (A-4)

then

2(t+)/x 2 < l(t )/x, (A-5)

Next, it will be shown that when Eq. A-4 holds, Inequal-

ity A-5 is automatically satisfied with the SSM model parameters

for 17 different basins. Thus if the state of the system is

initialized at a point at which constraint A-3 is satisfied,

the constraint will be satisfied from then on.

Suppose Eq. A-4 holds at time t and set

x 1 (t) x2 (t)
- = (A-5)

O OxI  x2

Three different possibilities arise

* X1 (t) = x 2 (t) = 0, (41 = 0)

• 0 < X (t) < x0 and 0 < x2(t) < x0, (0'<pl)

0 x (t) = Xl and x2 (t) x", (p =I).

In the first case, the inflow rates to the tension

and free-water elements are

xl(t) = u 1  (A-7)

and

x2 (t) = 0 (A-8)

A-3
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Therefore, Inequality A-5 is automatically satisfied.

Consider, next, the second alternative. The state

equations for the upper-zone elements become

Xl(t) = u1 - U2xl/x 1  (A-9)

x2 (t) = -dX 2 - p (A-10)

Therefore, the normalized inflow rates are

Wlt  u 1  u 2
= -- -- (A-]1I)

x0 x0 x0adx 1  x1  x1

and

x2 (t)

- d 4 0-- (A-12)
x2  x 2

In this case, Inequality A-5 is equivalent to

-d to - 2--  1 -, (A-13)
U 0 - 0 0x2  x1  x1

which can be rewritten as

u2  u

--- ) o < U, + - (A-114)
u - x x0

Since the expression on the right hand side of last inequality

is nonnegative, the inequality will certainly hold if

d> u O

du  2 u/ 1  (-5

Table A-I compares the values of the inter ltow paramt-
eter d with the maximum evapotranspirat ion rat(-, u . normaIl -

u2
ized by the capacity of the upper-zone tension water element,

A-4
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TABLE A-i

COMPARISON OF EVAPOTRANSPIRATION AND DRAINAGE RATES

BASIN 2 0 0 1d
(min/hr) (mun) (1/hr) (1/hr)

White River 5.8333E-2 50 1.1667E-3 1.4861E-2

French Broad 5.OOOOE-2 85 5.8824E-4 1.4861E-2

Bird Creek 2.7850E-2 120 2.3958E-4 1.4861E-2

Leaf River 5.6250E-2 20 2.8125E-3 1.7949E-2

Merarnec River 5.3333E-2 93 5.7347E-4 1.7313E-2

Danville, VA 1.9250E-1 249 7.7309E-4 4.6194E-2

Ariton, Ala. 1.9167E-1 75 2.5556E-3 9.2976E-3

Fulton, Miss. 2.2917E-1 70 3.2739E-3 3.3271E-2

Culloden, Ga. 1.9583E-1 132 1l.4836E-3 1.7949E-2

Northside, NC 2.645SE-1 78 3.3921E-3 j3. 5555E-2

EgeRvr1.4583E-1 10 1.4583E-2 1.48161E-2

1.8333E-1 20 9.1665E-3 1.4861E-2

S. Yamhill River 1.1875E-1 120 9.8958E-4 1.7949E-2

Clear Boggy Creek 416E2 25 1.6667E-3 3.61013E-3

Illinois River 8.3333E-2 28 2.()7 62 E- 3 8. 1106FE-3

Beaver- Creek 5.4167E-2 27 2.000~2E-3 1 .3457E-2

Baron Fork 8.3333E-2 21 3.9682E-3 1.1107E-2

Shoal Creek 6.2500E-2 20 3.1250E-3 1.552]E-2

0 for 17 different basins. In all inlstanlces Ineq~uality A-1r3

is sat isfied.
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Finally, for the last possibility, x=X 
0 and x2=x 0

The state equations become

x1 (t) = (uI - u2) hf(u 2 - u1 ) (A-16)

00

x 2(t) = [(uI1 - u 2 ) h e (u2 - u 1 I d uX x 2 p]

x hf duxO + p (u1  u 2 ) he(U 2 - Ul)] (A-17)

If u1 > u2, Eqs. A-16 and A-17 reduce to

x 1 (t) = 0 (A-18)

(t) (u1  u- d 2 - p) hf(duX2 + p - U1 + u2)

(A-19)

Thus, 2 (t) < 0 and, consequently, Inequ.lity A-5 must be satis-

fied. If u1 < u2 , the state-equations art identical to Eqs.

A-9 and A-10 and the same analysis used for the case 0 < P < I

shows that the normalized inflow rates into the upper-zone

elements satisfy Inequality A-5.

Therefore, for all basins listed in Table A-1, the

constraint on the ratio of free to tension-water for the upper-

zone is ineffective.

A-6
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